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Abstract  

In collaborative environments, social networks emerge due to interdependencies and interactions 

among actors and their partners. As collaboration advances, participant behaviors become 

interdependent, leading to profile variations that influence partner profiles. These interactions 

eventually culminate in the formation of relationships termed "ties," which can be strong, weak, or 

dissolved over time. Various activities, such as university course projects, arise from these ties, 

creating observable interactions in the network. This article explores the evolution of networks and 

learner interdependence within them, particularly focusing on learning-related interactions in 

educational settings. This survey article presents a comprehensive classification of networks and 

interaction models among learners. It delves into structural characteristics, illustrating how learners 

engage within these networks. The paper is organized into sections that progressively detail different 

network types: ego networks, duocentric networks, triadic networks, and scale-free networks. 

Comparative analysis across these models further enhances our understanding. By comprehensively 

categorizing these networks, this article contributes valuable insights for students, instructors, and 

curriculum developers seeking to comprehend learner dynamics and interactions in collaborative 

learning scenarios. 

Keywords: Social networks, collaboration, interaction models, ties, ego networks, duocentric 

networks. 

 

1. INTRODUCTION  

A social network generally arises in collaborations as a consequence of the dependencies, and 

interactions between actors, and their respective partners [1]. As the collaboration progresses, the 

behavior of participants tends to become interdependent. Hence, a variation in an actor’s profile results 

in a corresponding change in the partner’s profile. In the event that their interaction progresses over a 

period of time, a relationship is formed. This relationship is called a tie. A tie can be strong, weak, or at 

a later time broken. With the formation of ties, different forms of activities start taking place. These 

activities generate the interactions observed in social networks. A sample activity in a university setting 

could be a course project. Now, most course projects encourage group formation, have a start date, 

deadlines, and grades. Furthermore, this course project activity could be a subset of a semester task 

which consists of several course projects that eventually results in several collaborations among 
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students, and in some cases, interaction with software tools, such as Moodle [2, 3], LearnDash [4] 

Blackboard [5, 6, 7] and the SQLValidator [8] etc. As a consequence of these activities, and 

accompanying interactions, different networks begin to emerge. Thus being able to gain insight into 

the evolution of these networks, interdependence among learners, and learning-related activities 

becomes immensely beneficial to students that make up these teams, instructors that supervise the 

students, and curriculum developers.  

The goal of this survey article was to provide a comprehensive, and up-to-date classification of 

networks, and a range of possible interaction models that can be observed among learners in the course 

of learning-related interactions. We describe the main features, and structural characteristics of these 

networks and how learners interact within them. The remainder of this paper is organized as follows: 

Section 2 describes the essentials of social network interaction and introduces the learner-centered 

network interaction hierarchy. Section 3 describes the ego network and corresponding models. 

Furthermore, section 4 describes the duocentric network and corresponding models. Section 5 

describes the triadic network and corresponding models while section 6 describes the scale-free 

network. In Section 7 we comparatively analyze the various models. Section 8 presents the summary 

and future work.  

1.1. Contributions and article structure  

Interaction modeling is an important topic that has high practical relevance in the area of social 

network analysis and beyond. This importance is linked to the viability of social networks and the 

multitude of insights one can gain from the unending interactions occurring within them. As part of 

our initial effort, we surveyed and reviewed several existing publications in the area of social network 

and interaction modeling found on Elsevier, JASTOR, ACM, Google Scholar, IEEE explorer etc. Our 

survey revealed the absence of a literature survey for learner-centered networks and associated models. 

Ergo, this survey article aims to provide researchers’ desire to model group collaboration, readily useful 

social units with which groups can be classified. We also, describe associated models that readily give 

insight into group interaction dynamics, and the effects of collaboration. Compared to previous surveys 

related to learner network modeling, this survey:  

• Introduces the learner network interaction hierarchy.  

• Characterizes the various interaction modeling forms in learner-centered social networks.  

Overall, we provide a comprehensive, and up-to-date classification of interaction models that assume 

interdependence. While there are stochastic interaction models, learner interactions, and partner 

choices are not random. Hence our focus will be on this class of models.  

2. ESSENTIALS OF SOCIAL NETWORK INTERACTION  

As Gupta et al. said: “The concept of randomness and coincidence will be obsolete when people finally 

define a formulation for patterned interaction between all things within the universe [9].” Hence, in 

this section, we present the essential attributes that constitute an interaction. In general, interaction is 

broadly social and constitutes situations where the behaviors of an individual are consciously 

reorganized, and influenced by the behaviors of another individual, and vice versa. These interactions 

and behaviors form the basis of a social structure, and therefore fundamental objects of social inquiry 
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and analysis [10, 11, 12]. A social network platform acts as a new dimension to the traditional social 

interaction process. These interactions as observed in social networks are no different from the three-

way handshake [13, 14, 15, 16, 17], i.e., the algorithm used by the Transmission Control Protocol to 

establish and terminate a connection on the internet. These sequences of processes are involved in 

establishing and terminating a connection with an entity in a network consisting of message exchanges. 

The most important part of these messages is the internet protocol addresses. Hence, an actor has to 

know the name, address, and possibly the location of an artifact or another actor that it wants to interact 

with. Also very important in the three-way handshake is the response from the destination. This 

response can either be an acceptance or a denial. As a consequence of this structure, the identity, 

availability, location, and integrity information of every participating element of interaction needs to 

be known and shared for any interaction to take place. The lack or absence of any of them will result in 

a communication breakdown. Based on this context, one can define interaction as a multi-path 

relationship between two or more nodes in order to achieve an objective. The essential components 

required for the formation of these multi-path relationships in a social network can be categorized into 

two groups: the network structures which are essentially graphs and the profile of a node [18].  

In a graph, there are nodes that represent actors and for each node, there exists an interaction path 

between it and other nodes. These paths are called edges and they represent social connections such as 

friendship or project collaboration in the network. To get a better understanding, in the next 

subsection, we describe graphs and important properties.  

2.1. Graphs  

A graph, G is an ordered pair such that  

 G = (V(G),E(G)                                                                        (1)  

 where V is a set, whose elements are called vertices or nodes  

  

  E ⊆ {{x, y}| x, y ∈ V⟨x , y⟩}                                             (2)  

 and E, a set of edges which are unordered pairs [19].  

Another graph H is a sub-graph if  

 H ⊆ G ⇐⇒ V(G)| ∧ E(H) ⊆ E(G)                   (3)  

So, H is a sub-graph of G if and only if the vertex set of H is a subset of the vertex set of G and the edges 

set of H is a subset of the edges set of G. Fig. 1 shows a sample graph and a sub-graph. As can be seen 

from the two graphs, the vertices 1, 2, 3, 4, 5 and the corresponding edges of  

Graph B correspond to the vertices 1, 3, 4, 8, 5 and the corresponding edges in Graph A. Hence Graph 

B is a sub-graph of Graph A. These graphs can be either undirected or directed. For instance, 

Facebook’s network structure can be described as an undirected graph since the friendship structure is 

bidirectional, i.e., Alice and Bob being friends is the same as Bob and Alice being friends. On the other 

hand, Twitter can be described with a directed graph, i.e., Alice can follow Bob without Bob following 

Alice.  
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 Figure 1. Graph and Subgraph       Figure 2. Sociogram with six nodes  

 Directed graphs or digraphs are a set of ”nodes”, and a set of directed ”lines” or ”edges” connecting 

pairs of nodes. We will denote the number of nodes in a digraph by ”g”, the group size. This type of 

graph is better represented with an (n*n) square matrix Xm, called the adjacency matrix. Given a 

directed interaction, involving a group of 6 nodes or individuals, the square matrix Xm, shown in Fig. 2 

A, is used to represent the associated interactions. In Xm, Xmij designates the status of the relationship 

between node i to node j. Using a binary representation, we indicate the presence of a tie with “1” and 

its absence thereof with a “0”. After the establishment of a tie, the frequency of interaction can be 

indicated using ordinal numbers [20, 21]. Furthermore, in Fig. 2 B, the direction of the tie is 

represented using a sociogram. The arrowheads indicate the direction of the ties. An arrow pointing 

from node 5 to node 1 indicates a tie from Node 5 to Node 1. This is also seen through the sociomatrix 

Xm = 1 but Xm = 0. The  profile information annotates the established paths with details that inform on 

the attributes of the node and neighbor nodes [22, 23, 24]. In the next subsection, we describe the node 

profile.  

2.2. Node Profile  

A profile describes the significant characteristics of the individual that is represented by a node. In 

social networks, these characteristics consist of information about interactions, behavior, connections, 

opinions, etc. They are modeled within a graph as labels associated with the node. So given a node or 

individual, the profile information is modeled as a set of labels:  

 L = {I1, ..., In}                        (4)  

  

These labels as identified in [1] come in several forms: demographic labels, such as age, gender, and 

location; labels that represent political or religious convictions; labels that encode activities, hobbies, 

and affiliations; and many other aspects that capture an individual’s preferences [25, 26]. So in general 

as also observed in offline social networks, interaction occurs between individuals that have similar 

profiles, i.e. when the nodes have similar hobbies, attend the same lecture, have close convictions, etc. 

For network measures such as centrality, diversity, and density, please refer to [1, 27]. Given these 

interactions, 4 types of networks can be inferred: the dyad, the triad, and networks of arbitrary size. 

These networks form a hierarchy which we discuss in the next section.  
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2.3. Learner Centered Network Interaction Hierarchy  

Within the scope of the considered interaction classes, i.e., ergodic, dyadic, and triadic interactions, 

etc., we observe that an interaction hierarchy can be inferred. This survey presents a classification of 

these hierarchies. Based on [1, 28, 29, 30], our hierarchy includes three main classes of networks or 

social units, namely dyadic networks, triadic networks, and networks of arbitrary size.  

  
Figure 3. Learner Network Interaction Hierarchy 

As illustrated in Fig. 3, these roughly form a hierarchy where networks of arbitrary size are the widest, 

i.e., most general type, whereas duocentric networks have the most specific domain. So as we move up 

the hierarchy, interactions become more restricted hence reducing the number of independently 

varying parameters in the interaction. This constrained degree of freedom allows for easy interaction 

modeling and instrumentation.   

In the next sections, we will describe the important features of each network in the interaction 

hierarchy and the respective models associated with them.  

3. DUOCENTRIC NETWORKS  

In the following, we briefly describe duocentric networks, a network that facilitates dyadic interactions. 

Given a directed network, we define a duocentric network as a sub-network consisting of a pair of nodes 

and their associated ties [31, 32]. This pair of nodes are called dyads, the fundamental unit of 

interpersonal relations [31, 33, 34, 35]. The duocentric network is used when a pair of egos is central 

to a research problem. The main characteristic of this network is that it is bounded around a pair of 

egos while ignoring the ties among the respective alters [27].  
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Figure 4. Duocentric network  

In the analysis of a duocentric network, it is important to verify whether the two selected egos, singular 

individuals, are from the same class or category, i.e., whether they can be are precisely distinguished 

from one another as a function of some variable that can be used to differentiate them [36, 37, 38]. So 

if a research objective is to gain insight into on performance of male and female students in a 

programming language course, gender will topically be treated as a distinguishing variable.  

The students can further be distinguished by roles, i.e, if the respective course project is to be done by 

groups of students, and roles are designated within the groups. Apart from dyads being distinguishable, 

it is important to know if they are exchangeable. for exchangeable dyads, there are no relevant variables 

or roles by which the egos in the dyads can be consistently distinguished (e.g., same-sex friendships).  

The following are the characteristics of a duocentric network as shown in Fig. 4:  

• Primary actors, Ego A and Ego B, must be central and expressed as egos.  

• Other actors are classified as alters per the ego model.  

• No relationships are captured among alters.  

• Actors who only interact with one ego are classified as isolates.  

• Interaction and dependence are shown by arrow direction.  

The interactions that occur in duocentric networks are not random. They are characterized as within-

dyad dependencies. These dependencies are both bounded and influenced by the commonalities, and 

similarities shared by the network nodes in question. In the next subsection, non-independence, the 

property that gives insight into the shared dependencies found in duocentric networks is described.  

3.1. Non-Independence  

When dependencies exist between pairs of attributes belonging to nodes in dyadic interactions (e.g, a 

male and a female student that belong to the same project group in a university course), the attributes 

of these two individuals or nodes are then more similar to one another than other nodes, (i.e. other 

students in the same course in other groups). For the dyad, other students, and instructors that 

constitute the main network are called isolates. An isolate that is a structural hole influence the 

interaction dynamics within a duocentric network [39]. These two nodes are said to exhibit the non-

independence property [40]. This non-independence feature captures the commonalities shared by 

two sides of a dyad [41, 42].  

3.2. Dyadic Data Analysis  

The primary objective of duocentric network analysis is the formulation of mathematical models that 

explain the non-independence property. For this, two types of variables, i.e. exogenous and endogenous 

variables are used. Exogenous variables, depicted as ”X” in the models, are independent variables. They 

appear only as explanatory variables, and their values are determined outside the model. Endogenous 

Variables on the other hand are dependent variables. They will be depicted as ”Y” in the models. They 

are caused by one or more variables in a model. Also, an endogenous variable may cause another 

endogenous variable in a model [43, 44, 45]. Furthermore, a structural equation model is defined for 

each endogenous variable. These structural equation models are multiple equation regression models 

representing assumed causal relationships among several variables, some of which may affect each 
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other mutually [45]. Using these variables, three different models that produce non-independence in a 

duocentric network setting, the Social Relations Model, the actor-partner model, mutual influence 

model, and common fate model will be described in the next sub-sub sections  

3.2.1. Actor-Partner Interdependence Model  

In the actor–partner model, non-independence is hypothesized to occur as a result of pre existing 

attributes of each partner, which affects both his or her interaction behavior, and also the interaction 

behavior of his or her partner [46, 40, 47]. For each partner as shown in Fig. 5, there exist endogenous 

variables and exogenous variables. The “Xi” as previously described, represent pre existing attributes 

or predispositions that the two actors bring to the interaction that may shape their interaction 

behaviors depicted by the ”Yj”. Thus, in a class project consisting of dyadic groups, a neglectful behavior 

of a group member may result in a poor performance for every group member.  

Y1 = aX1 + bX2 + E1  (5)  

Y2 = bX1 + aX2 + E2  (6)  

 In Fig. 5, ‘a’ and ‘b’ represents the paths and is equal across the two members of the interacting pair, 

‘c’ represents the error variances, ‘d’ represent the variances of the exogenous variables, ‘e’ represents 

the covariance of the exogenous variables X1 and X2, and ‘f’ represents the covariance of the errors or 

disturbances E1 and E2.  

   
Figure 5. Actor Partner model [47]  

The heart of the model are Paths a and b. Path a represents the actor effect, i.e., the effect of a person’s 

level of X on his or her level of Y. Path b represents the partner effect, i.e., the effect of a person’s level 

of X on his or her interaction partner’s level of Y [47] The structural equation model, and the multilevel 

modeling or hierarchical linear model are two modeling approaches applicable to analyzing the actor–

partner interdependence model.  

3.2.2. Mutual Influence Model  

In the mutual influence model, a derivative of the actor-partner interdependence model shown in Fig. 

6, interdependence is hypothesized to arise because the partners’ behaviors constitute a feedback loop 

[40, 47], whereby the Y’s reciprocally influence each other. For example, a learners satisfaction is 
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influenced or affected by his/her partner’s ot team members satisfaction i.e, the commitment of one 

partner influences the commitment of the other.  

Where ‘a’ and ‘b’ represents the paths and is equal across the two members of the interacting pair, ‘c’ 

represents the error variances, ‘d’ represent the variances of the exogenous variables ‘e’ represents the 

covariance of of the  

  
Figure 6. Mutual influence model [47] exogenous variables X2 and X2, ‘f’ represents the covariance of 

the errors or disturbances E1 and E2. The heart of the model is the feedback loop represented by the 

reciprocal Paths b, and also Paths a, through which the X’s serve as instrumental variables [47].  

3.2.3. Common Fate Model  

In the common fate model, the partners’ behaviors become non-independent owing that they are both 

impacted in the same way by influences at the dyad level. Latent variables in a statistical model are 

random variables that are not necessarily immeasurable. They are employed to represent features of 

interest in a model, that are not directly measurable or were not measured. They can also be used to 

construct estimators that are more efficient than those constructed from non-latent variable models. 

These shared situational or environmental pressures are conceived as dyad-level latent variables. They 

can also be used to construct estimators that are more efficient than those constructed from non-latent 

variable models [48]. In Fig. 7 two indicators, X1, X2, and Y1, Y2 are used to measure the latent variables. 

They reflect the scores of dyad member A and Member B (team member A and team member B) on the 

underlying latent construct [49, 47, 40, 50]. As shown in Fig. 7, one dyad-level latent variable, LX, 

influences another dyad-level latent variable, LY. This influence is indicated by the path ”a” which 

indicates LX is directly affecting LY.  

Using LX as an example, the variances and standard error of the between-dyad latent variables LX, LY, 

and Z are calculated as follows:  

   
 Figure 7. Common fate model [47, 49]  

3.3. The Social Relations Model (SRM)  

The SRM allows the number of individual under evaluation to scaled up to more than just two 

individuals. Thus given that six individuals are involved in an interaction, it is tenable that their 



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
39 | P a g e  

characters’ will influence or affect one another. Thus, their joint or dyadic, characteristics affect what 

happens between them. Hence they are interdependent on each other in as much as their relationship 

is concerned. To model this interdependence, the social relations model, a conceptual, and analytic 

approach to focus on the interdependence that exists in the relationships among individuals is 

employed. It analyzes the two-dimensional matrices of data representing interpersonal perceptions, 

affect, or behaviors elicited from their interaction via questioners [51, 52].  

   
Figure 8. Associated Variances and Covariances  

  
 Figure 9. A two-dimensional matrix  

Fig. 9 shows such a matrix. Here, X12 for example, represents scores derived from surveys on the extent 

that six student ”1” perceives student ”2” as knowledgeable with respect to a structured query language 

task. These scores can either be continuous or a dichotomous variable but it’s common that these data 

consists of continuous scores. When using continuous scores in a survey, respondents receive a score 

for each survey question. These scores add up to a predefined total from which associated variances 

and covariances shown in Fig. 8 are derived. The variances and covariances facilitate the estimation of 
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individual effects for a range of concepts as actor, partner, dyadic effects, etc. Actor effects for example 

are impartial assessments of an individual’s behavior toward others, and partner effects refer to 

unbiased assessments of the ways in which an individual influences their partner [52, 51].  

3.4. Discussion  

As mentioned above, the interactions observed in duocentric networks are characterized by within-

dyad dependencies. These dependencies are the fundamental building blocks for measuring 

interpersonal influence. As observed in the majority of the surveyed literature, the actor partner model 

is the most employed of the three discussed models. The actor partner model evaluates to which extent 

an actor’s behavior or state is a consequence of his character or the character of his partner. It can be 

applied when dyad members are either distinguishable or exchangeable. The mutual influence model 

which is a variation of the actor-partner model omits partner effects. So for a group of two students 

working together for the first time on a course project, the mutual influence model does not take their 

individual effects into account. This omission of partner effects makes the implementation of the model 

difficult and further increases the possibility of erroneous estimates. The common fate model is an 

alternative to the actorpartner model in that the two egos are assumed not to influence each other. 

Rather, both are under the influence of either a shared situational, an environmental factor, or their 

dyadic personality [47, 50, 40].The social relations model is more in-depth, in that it requires elicitation 

and analysis of data representing interpersonal perception effects, or behaviors of all the participants, 

etc. It is mostly employed for large dyadic group studies. When a third node or individual joins a dyadic 

network, a triadic network is formed. This new network not only creates room for new forms of social 

relationships but also alters the interpersonal dynamics of the dyad. In the next section, we discuss the 

triadic network and associated model.  

4. TRIADIC NETWORKS  

Given a directed or an undirected network, a triadic network is a subnetwork consisting of any three 

nodes and their associated ties. These nodes take either a null or unconnected configuration, 

disconnected or connected pair configuration, and an open or closed configuration as shown in Fig. 10. 

Nodes in a triad are transitively associated with each other [28], and to determine their roles, we take 

the triad census,  

  
Figure 10. Triads [53, 54] shown in Fig. 10.  

i.e., we count the number of the different triad variations it participated in. The relationship between 

these nodes can either be directed or undirected. For undirected relationships, the nodes can form 
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closed, open, and unconnected relationships. The unconnected relationship can either be completely 

unconnected or a connected pair as shown in Fig 10.  

The closed triad describes a cyclic relationship such that all nodes in the triad are connected, i.e., A—

T—B, (A is tied to B), B—T—C, and A—T—C. For the open triad, interaction is mediated,  

i.e, a single node A mediates the relationship between node B and node C. So we have A—T—C, and A—

T—B. Hence, information passes from A to B and then to C and back to A.  

Directed relationships constitute an isomorphism. An isomorphism is a structure-preserving mapping 

between two structures of the same type that can be reversed by an inverse mapping [56, 57, 58], and 

owing to that two subgraphs are isomorphic if they are identical [1], a dyad that is neither asymmetrical 

nor mutual is null as shown in the sociomatrix in Fig. 11. Thus we have the first dyad variation, the null 

dyad. The second isomorphism, is invariant to a transformation, such as reflection hence it is not 

possible to distinguish between the two different forms i.e. B(i → j), and C(j → i) of asymmetric dyadic 

relations. The mutual dyad relationship, denoted by i ⇐⇒j between actor i, and actor j comes into play 

when i → j and j → i in the dyad [55, 59]. Thus, the mutual dyadic relation between  

  
Figure 11. Dyadic isomorphism [55]  
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Figure 12. Directed triad relationship configurations [53, 54] actor I and actor j is represented by Dij = 

(1, 1) as shown in Fig. 11. Thus for directed triad relationships, there exists g3, distinct 3-subgraphs 

formed by selecting each of the possible subsets of the 3 respective nodes, and their corresponding ties. 

This results in 16 isomorphism classes as shown in Fig. 12. Letter: U indicates Up, and D signifies Down, 

C indicates Cyclical and T signifies transitive (i.e., having 2 paths that lead to the same endpoint). The 

variation denoted with 120D has 1 mutual, 2 asymmetric, 0 null dyads, and the down orientation. In 

this manner, the triads 1-3 depict an unconnected relationship, triads 4-8, and 11 depict variations of 

structural holes, and triads 9, 10, and 12-16 are variations of closed triads. The relationship between 

nodes in directed triad relationships eventually becomes a closure. Triadic closure, also known as 

transitivity or clustering, refers to tie formation in open triads, which closes over time  

[60, 61, 62, 63, 64]. So for two individuals with a common acquaintance, there is a high likelihood of a 

tie forming between them via the social influence of their common acquaintance [61, 65, 66, 67]. Triadic 

closure not only occurs in stand-alone triads but also in triads within large groups and entire networks. 

Thus, as one mutual connection increases the likelihood of tie formation between two individuals, 

multiple mutual connections increase the probability for even more connections [61, 68]. To measure 

the presence of triadic closure, we employ the clustering coefficient measure, which is a measure of the 

degree to which nodes in a graph tend to cluster together [69, 70]. In the next subsection, we describe 

the mutual modeling and triadic relations model.  

4.1. Mutual Modelling  

Mutual modeling is a bidirectional approach employed in both dyadic, and triadic interaction 

modelling [71]. Given a task involving three actors, A, B, and C, A builds a model of B, and C, and B 

builds a model of A, and C and C builds a model of B and A. This is represented using the notation M(C, 

A, X) which denotes “C knows that A knows X”. As the non-independence assumption is in play, C’s 

model of what A knows includes what C knows about A. So, if A states “C thinks I am proficient in 

programming”, A then builds a second-level model: M(A, C,  

M(C, A, Programming - Skill)). Furthermore, Mo(C, A, X) represents the degree of accuracy of the 

model. So, for the accuracy of what A, B, C models about each other, we have 6 models as shown in Fig. 

13  

 

  
  

Figure 13. Mutual modelling in a triadic interaction [71]  

4.2. Mutual Modelling (TRM)  

The triadic relations model extends the logic of the social relations model, section 3.3, to the analysis 

of data cubes. It takes into account the characteristics of the perceiver, actor, and partner, as well as 

their combinations all resulting in seven variances, and 16 covariance estimates. Given a situation in 
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which what to deduce if an actor A agrees against partner B according to partner C, the tiadic relations 

model assumes that the perceiver’s insight is comprised of eight components as shown below:  

   
where M is the mean perception within the group, ai is the group’s perception of actor i’s aggressiveness, 

bj is the group’s perception of partner j’s victimization, ck is the perception perceiver k has of aggression 

(among peers in general), abij is the group’s perception of actor i’s aggressiveness toward partner j, acik 

is the perception subject k has of actor i’s aggression toward others, bcjk is the perception subject k has 

of partner j’s victimization by others, and abcijk is the specific perception k has of actor i’s aggression 

toward partner j [52]. Having derived these components, the individual level variances, dyad variances, 

and triad level variances are calculated, and further estimations are derived from them.  

4.3. Discussion  

Triads are less reliant on the particular behaviors of their immediate participants for their structure, 

and property. As such, commitment in triadic relationships is bounded by achieving a goal. Such a goal 

can be the achievement of success in a course project. Given this goal, mutual modeling for triadic 

interactions consists of models of what the participants know about each other with respect to the goal 

of the relationship. This makes it suitable for modeling learner networks. The triadic relations model, 

on the other hand, allows for the study of multiple individuals, and dyadic processes simultaneously. 

Furthermore, the TRM can be employed in studying three dyadic processes simultaneously. More 

importantly, the TRM allows one to analyze the overlap among dyadic processes, for instance, whether 

an individual’s behavior toward a peer is associated with that peer’s perception of the individual. 

Despite requiring more computation than mutual modeling, TRM gives more insight into factors that 

affect the dynamics of triadic collaboration [72].  

While there are other models employed in triadic interaction modeling as observed in our literature 

survey, most of them incorporate stochastic assumptions which violate the nonindependence 

assumption.  

5. NETWORKS OF ARBITRARY SIZE  

Social capital is an efficacy derived from collaborative connections between individuals which results 

in the accomplishment of goals [73]. For example, a group with high trustworthiness and skill for a 

specified task is able to accomplish much more than a comparable group with the same level of skill 

and no trust. As such, the structural importance of an individual or node in a network or social unit is 

affected by its centrality with respect to the flow of social capital. Thus, the formation of new ties, choice 

of partners, and the evolution of the above-discussed networks are mainly driven by homophily and 

directed by preferential attachment [74, 75]. In consequence, the growth or evolution of dyadic, and 

triad networks into networks of arbitrary sizes follow a pattern observed in systems that produce 

power-law distributions. These systems are described as scale-free. The scale-free networks will be 

described in the next subsection.  

Scale-Free Networks  
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The term scale-free is a mathematical expression used to describe the power-law characteristics of a 

probability distribution? The most basic model capable of producing a power-law degree distribution 

is the Barabasi-Albert (BA)´ model [76, 77]. At each time step in Barabasi-Albert’s model, once a new 

node is created, it is connected to existing´ nodes in conformity with “preferential attachment” 

principle. Thus given a scale-free network, the probability P(K) of a node having K links follows a power 

law with degree exponent γ as shown in equation 12  

P(K) ∝ Kγ             (12)  

Furthermore, results from the study of Hein et al [78] in which the internet was mapped, shows that 

the majority of the pages or nodes had few links while few pages had a large number of links. This is 

illustrated in Fig. 14.A. The logarithmic plot of the distribution of the edges is further shown in Fig. 

14.B, which reveals the power-law characteristics of the distribution [79, 78]. This power-law 

characteristic, explains why in a network, a large number of nodes have very few connections, and a 

small number of nodes, structural holes, have a very high degree [77].  

In all, driven by preferential attachment the previously discussed networks continuously grow as shown 

in Fig. 15, thus scale-free. Of the scale-free network shown in Fig. 15. Two of the main features of 

learner-centered networks that mirror the scale-free characteristics are:  

• Continuous evolution. In the course of university enrollment, a student starts as an ego, and with 

each passing semester, new relationships are formed with other students in the same study. Also owing 

that there are inter-faculty courses, relationships also form between students of different faculties. In 

all, a learner’s networks continue to evolve beyond the individual learning period [78].  

• Preferential attachments. This is a typical feature of offline networks. New associations or nodes 

prefer to attach to structural holes or nodes close to structural holes. As a result of this preference in 

tie formation, structural holes, their support cliques, affinity group members, and sympathy group 

members record more interactions. This leads to the formation of a few highly connected hubs [78].  

 
Figure 14. Power law distribution of node linkages [80]  
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Figure 15. Evolution of a scale-free network as a consequence of transitive relationships  

Fig. 15 shows a description of how scale-free networks evolve over a period of time, starting from a 

duocentric network. Some examples of scale-free networks are shown in Table 1.  

Table 1. Examples of Scale-Free Networks [80]  

 

Network  Nodes  Links  

Internet  Routers  
Optical and other 

physical connections  

Protein 

regulatory 

network  

Proteins that help to 

regu- late a cell’s 

activities  

Interactions among 

proteins  

Research  

Collaborations  
Scientists  

Co-authorship of 

papers  

World Wide 

Web  Web pages  URLs  

6. COMPARATIVE ANALYSIS  

The basic assumption that associates the models described in previous Sections with each other is the 

non independence assumption, which assumes that tie formation between individuals is not random. 

Based on this parent assumption, the following assumptions, and concepts,  

• Distinguishability, which asserts that members of a social network are distinguishable if they 

differ on a dimension that is of factual relevance to the purpose of the investigation. For example, in an 

analysis examining instructor-student relation, the instructor, and student are typically interpreted as 

distinguishable because they play different roles in the interaction, one as an instructor in a lecture and 
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the other as a student. Furthermore, members of a social network can be distinguished based on 

inherent variables such as age, sex, empirical scores, etc.  

Table 2. Comparison of the considered network models  

   Associated Models           

Criterion  
Dunbar 

model  

Actor 

Partner 

model  

Mutual 

influence 

model  

Common  

fate  

model  

Mutual 

Model  

SRM  TRM  

Assumption of  

Distinguishability  
0  X  X  X  0  X  X  

Assumption of 

Homophily  
0  X  X  X  X  X  X  

Assumption of 

Network closure  
-  -  0  -  X  X  X  

Bidirectional 

Influence  
-  0  0  0  X  X  X  

Assumption of  

Transitivity  
-  0  0  0  X  X  X  

Assumption of 

Centrality  
X  -  -  -  -  -  -  

Legend: x = implements concept; o = partially implements concept; - = does not 

implement concept  

 Table 3. Comparison of the considered network structures  

 
Learner Networks  

  

Criterion  Duocentric  Triadic  

Networks of 

Arbitrary Size  

Instrumentation 

Level  
Medium  Medium  low  

Interaction with 

Alters  restricted  restricted  restricted  

Network Size  2  3  unrestricted  

Reciprocity  High  Medium  Medium  
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• Homophily, a predisposition for individuals to associate with other individuals they perceive via 

choice or  external induction like culture, behavior, etc, to be similar to them. Thus contacts among 

similar people occur at a higher rate than among dissimilar people.  

• Network closure, which describes networks in which nodes are highly connected to each other 

thus fostering trust, cooperative, and collaborative behaviors among nodes in the network.  

• Centrality which indicates or measures the importance or position of an actor in a network. Thus, 

a structural hole is central with respect to its immediate local network.  

• Bidirectional influence which are effects that are observed in dyadic and triadic relationships 

when partner effects from network members are present and statistically significant.  

• Transitivity is the tendency that two actors who are connected to a third-party preferentially 

establish a mutual relationship in the course of time.  

etc., are used in Table 2 to comparatively distinguish between the models based on which features and 

assumptions they embody. Table 3 further differentiates the networks in Fig. 3 based on their level of 

instrumentation, network size, actor interaction with alters, and reciprocity. Overall, the mutual model, 

and triad relations model while being feature-rich is suited for triads although they can be adapted for 

dyads. The mutual influence model is a derivative of the actor partner model which is specially fitted 

for dyadic networks. It can also be extended to triads, in which case six models are required, and a 

cumulative effect is derived by comparing all the individual effects. The common fate model, also a 

derivative of the actor partner model allows one to take into account, latent variables as individual 

behaviors, and emotions that affect how they interact. Calculating the variances, and covariances in the 

social relations model can sometimes be complicated and lead to errors, but they offer detailed insights 

into individual behaviors, and how they affect interaction. Also using this method, group structures are 

not a requirement.  

SUMMARY AND FUTURE WORK  

The goal of this survey article was to provide a comprehensive, and up-to-date classification of 

networks, and a range of possible interaction models that can be observed among learners in the course 

of learning-related interactions. We introduced the main features and structural characteristics of these 

networks and how learners interact within them. Having introduced the related models and their basic 

characteristics, we comparatively analyzed them. Taken together, we highlighted – from the conducted 

literature survey - the most relevant information and sufficient references to follow up on any of the 

above-mentioned models and networks. However, interaction models constitute a large, 

interdisciplinary area of research that is reasonably developed. Therefore, our survey analysis is by no 

means all-encompassing. Furthermore, as mentioned above, we solely focused on interaction models 

that assume interdependence. Future work could on the one hand widen the scope by addressing 

further aspects of learner-based interactions, and on the other hand focus on going deeper into specific 

subareas as skill acquisition, and effective collaboration strategies. Nevertheless, we hope that our 

article contributes to a better understanding of current learner-centered interaction models, and 

provide starting points for future research.  

REFERENCES  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
48 | P a g e  

S. Wasserman, K. Faust, et al., Social network analysis: Methods and applications.  

E. Costello, Opening up to open source: looking at how moodle was adopted in higher education, Open 

Learning: The Journal of Open, Distance and e-Learning 28 (3) (2013) 187–200.  

A. Horvat, M. Dobrota, M. Krsmanovic, M. Cudanov, Student perception of moodle learning 

management system: a satisfaction and signifi- cance analysis, Interactive Learning 

Environments 23 (4) (2015) 515–527.  

J. Friska, Development of e-learning application as a learning media for production ecrite d´  

 ebutant.´  

M. Machado, E. Tao, Blackboard vs. moodle: Comparing user experience of learning management 

systems, in: 2007 37th annual frontiers in education conference-global engineering: Knowledge 

without borders, opportunities without passports, IEEE, 2007, pp. S4J–7.  

J. Little-Wiles, L. L. Naimi, Faculty perceptions of and experiences in using the blackboard learning 

management system., Conflict Resolution & Negotiation Journal (4).  

F. Alturise, Evaluation of blackboard learning management system for full online courses in western 

branch colleges of qassim university, International Journal of Emerging Technologies in 

Learning (iJET) 15 (15) (2020) 33–51.  

V. Obionwu, D. Broneske, A. Hawlitschek, V. Koppen, G. Saake, Sqlvalidator–an online student 

playground to learn sql, Datenbank-Spektrum¨ (2021) 1–9.  

P. Gupta, S. Mallick, T. Mishra, Does social identity matter in individual alienation? household-level 

evidence in post-reform india, World Development 104 (2018) 154–172.  

L. Gillett, Common ground: Urban architecture.  

J. H. Turner, A theory of social interaction, Stanford University Press, 1988.  

S. A. Memon, B. H. Hadikusumo, R. Y. Sunindijo, Using social interaction theory to promote successful 

relational contracting between clients and contractors in construction, Journal of Management 

in Engineering 31 (6) (2015) 04014095.  

L. L. Peterson, B. S. Davie, Computer networks: a systems approach, Elsevier, 2007.  

V. Cerf, R. Kahn, A protocol for packet network intercommunication, IEEE Transactions on 

Communications 22 (5) (1974) 637–648. doi:10.1109/TCOM.1974.1092259.  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
49 | P a g e  

N. Gopalan, B. S. Selvan, TCP/IP ILLUSTRATED, PHI Learning Pvt. Ltd., 2008.  

S. Laisema, P. Wannapiroon, Collaborative learning model with virtual team in ubiquitous learning 

environment using creative problem solving process, arXiv preprint arXiv:1401.2232.  

A. Dani, Students’ patterns of interaction with a mathematics intelligent tutor:  Learning analytics 

application, arXiv preprint arXiv:1607.07284.  

J. Lin, L. Zhang, M. He, H. Zhang, G. Liu, X. Chen, Z. Chen, Multi-path relationship preserved social 

network embedding, IEEE Access 7 (2019) 26507–26518.  

U. Brandes, Network analysis: methodological foundations, Vol. 3418, Springer Science & Business 

Media, 2005.  

F. Harary, The determinant of the adjacency matrix of a graph, Siam Review 4 (3) (1962) 202–210.18  

T. Gossen, M. Kotzyba, A. Nurnberger, Graph clusterings with overlaps: Adapted quality indices and a 

generation model, Neurocomputing¨ 123 (2014) 13–22.  

C. G. Akcora, B. Carminati, E. Ferrari, User similarities on social networks, Social Network Analysis 

and Mining 3 (3) (2013) 475–495.  

C. G. Akcora, B. Carminati, E. Ferrari, Network and profile based measures for user similarities on 

social networks, in: 2011 IEEE Interna- tional Conference on Information Reuse & Integration, 

IEEE, 2011, pp. 292–298.  

E. Raad, R. Chbeir, A. Dipanda, User profile matching in social networks, in: 2010 13th International 

Conference on Network-Based Information Systems, IEEE, 2010, pp. 297–304.  

D. Zhang, J. Yin, X. Zhu, C. Zhang, User profile preserving social network embedding, in: IJCAI 

International Joint Conference on Artificial Intelligence, 2017.  

Y. Yang, Y. Dong, N. V. Chawla, Predicting node degree centrality with the node prominence profile, 

Scientific reports 4 (1) (2014) 1–7.  

D. P. Kennedy, G. L. Jackson, H. D. Green, T. N. Bradbury, B. R. Karney, The analysis of duocentric 

social networks: A primer, Journal of Marriage and Family 77 (1) (2015) 295–311.  

K. Faust, A puzzle concerning triads in social networks: Graph constraints and the triad census, Social 

Networks 32 (3) (2010) 221–233.  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
50 | P a g e  

V. Arnaboldi, M. Conti, A. Passarella, F. Pezzoni, Analysis of ego network structure in online social 

networks, in: 2012 International Conference on Privacy, Security, Risk and Trust and 2012 

International Confernece on Social Computing, IEEE, 2012, pp. 31–40.  

A. Sutcliffe, R. Dunbar, J. Binder, H. Arrow, Relationships and the social brain: integrating 

psychological and evolutionary perspectives, British journal of psychology 103 (2) (2012) 149–

168.  

D. Griffin, R. Gonzalez, Models of dyadic social interaction, Philosophical Transactions of the Royal 

Society of London. Series B: Biological Sciences 358 (1431) (2003) 573–581.  

L. Coromina, J. Guia, G. Coenders, A. Ferligoj, Duocentered networks, Social networks 30 (1) (2008) 

49–59.  

M. L. Knapp, J. A. Daly, Handbook of interpersonal communication, Sage, 2002.  

L. Yu-Hui, H. Fei, Actor-partner interdependence model (apim): A model for dyadic data analysis, 

Advances in Psychological Science 18 (08)(2010) 1321.  

R. L. Moreland, Are dyads really groups?, Small Group Research 41 (2) (2010) 251–267.  

R. Gonzalez, D. Griffin, The correlational analysis of dyad-level data in the distinguishable case, 

Personal Relationships 6 (4) (1999) 449–469.  

J. A. Olsen, D. A. Kenny, Structural equation modeling with interchangeable dyads., Psychological 

methods 11 (2) (2006) 127.  

R. Gonzalez, D. Griffin, Dyadic data analysis.  

R. S. Burt, Structural holes and good ideas, American journal of sociology 110 (2) (2004) 349–399.  

D. A. Kenny, Models of non-independence in dyadic research, Journal of Social and Personal 

Relationships 13 (2) (1996) 279–294.  

D. A. Kenny, D. A. Kashy, W. L. Cook, Dyadic data analysis, Guilford Publications, 2020.  

D. A. Kenny, D. A. Kashy, The design and analysis of data from dyads and groups.  

D. A. Kenny, Terminology and basics of sem, Terminology.  

D. Iacobucci, Everything you always wanted to know about sem (structural equations modeling) but 

were afraid to ask, Journal of Consumer Psychology 19 (4) (2009) 673–680.  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
51 | P a g e  

J. Fox, Teacher’s corner: structural equation modeling with the sem package in r, Structural equation 

modeling 13 (3) (2006) 465–486.  

L. Campbell, D. A. Kashy, Estimating actor, partner, and interaction effects for dyadic data using proc 

mixed and hlm: A user–friendly guide, Personal Relationships 9 (3) (2002) 327–342.  

E. Woody, P. Sadler, Structural equation models for interchangeable dyads: being the same makes a 

difference., Psychological methods 10 (2) (2005) 139.  

P. Spirtes, Latent structure and causal variables.  

T. Ledermann, D. A. Kenny, The common fate model for dyadic data: variations of a theoretically 

important but underutilized model., Journal of Family Psychology 26 (1) (2012) 140.  

R. Gonzalez, D. Griffin, Modeling the personality of dyads and groups, Journal of Personality 70 (6) 

(2002) 901–924. 19  

D. A. Kenny, D. A. Kashy, W. L. Cook, The analysis of dyadic data (2006).  

N. A. Card, P. C. Rodkin, C. F. Garandeau, A description and illustration of the triadic relations model: 

Who perceives whom as bullying whom?, International Journal of Behavioral Development 34 

(4) (2010) 374–383.  

H. Huang, J. Tang, L. Liu, J. Luo, X. Fu, Triadic closure pattern analysis and prediction in social 

networks, IEEE Transactions on Knowledge and Data Engineering 27 (12) (2015) 3374–3389.  

M. Tsvetovat, A. Kouznetsov, Social Network Analysis for Startups: Finding connections on the social 

web, ” O’Reilly Media, Inc.”, 2011.  

S. Uddin, L. Hossain, et al., Dyad and triad census analysis of crisis communication network, Social 

Networking 2 (01) (2013) 32.  

B. Mazur, When is one thing equal to some other thing, Proof and other dilemmas: Mathematics and 

philosophy (2007) 221–242.  

B. Mazur, K. Rubin, A. Silverberg, Twisting commutative algebraic groups, Journal of Algebra 314 

(2007) 419–438.  

P. W. Holland, S. Leinhardt, The statistical analysis of local structure in social networks (1974).  

J. Moody, Matrix methods for calculating the triad census, Social Networks 20 (4) (1998) 291–299.  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
52 | P a g e  

R. S. Burt, Structural holes versus network closure as social capital, in: Social capital, Routledge, 2017, 

pp. 31–56.  

T. Song, Q. Tang, J. Huang, Triadic closure, homophily, and reciprocation: an empirical investigation 

of social ties between content providers, Information Systems Research 30 (3) (2019) 912–926.  

M. Gargiulo, G. Ertug, C. Galunic, The two faces of control: Network closure and individual 

performance among knowledge workers, Administrative Science Quarterly 54 (2) (2009) 299–

333.  

T. Q. Peng, Z.-Z. Wang, Network closure, brokerage, and structural influence of journals: a longitudinal 

study of journal citation network in internet research (2000–2010), Scientometrics 97 (3) (2013) 

675–693.  

G. Kossinets, D. J. Watts, Empirical analysis of an evolving social network, science 311 (5757) (2006) 

88–90.  

D. Easley, J. Kleinberg, et al., Networks, crowds, and markets: Reasoning about a highly connected 

world, Significance 9 (1) (2012) 43–44.  

B. Zhang, P. A. Pavlou, R. Krishnan, On direct vs. indirect peer influence in large social networks, 

Information Systems Research 29 (2) (2018) 292–314.  

A. V. Mantzaris, D. J. Higham, Infering and calibrating triadic closure in a dynamic network, in: 

Temporal networks, Springer, 2013, pp. 265–282.  

H. Louch, Personal network integration: transitivity and homophily in strong-tie relations, Social 

networks 22 (1) (2000) 45–64.  

T. Opsahl, Triadic closure in two-mode networks: Redefining the global and local clustering 

coefficients, Social networks 35 (2) (2013) 159–167.  

H. Yin, A. R. Benson, J. Ugander, Measuring directed triadic closure with closure coefficients, Network 

Science 8 (4) (2020) 551–573.  

P. Dillenbourg, S. Lemaignan, M. Sangin, N. Nova, G. Molinari, The symmetry of partner modelling, 

International Journal of Computer- Supported Collaborative Learning 11 (2) (2016) 227–253.  

C. F. Bond, D. A. Kenny, E. Horn Broome, J. J. Stokes-Zoota, F. D. Richard, Multivariate analysis of 

triadic relationst, Multivariate behavioural research 35 (3) (2000) 397–426.  



Journal of Education and Digital Learning 
Volume 10 Issue 2, April-June 2022 
ISSN: 2995-3723 

Impact Factor: 6.84 

http://kloverjournals.org/journals/index.php/edl 

 

 

Journal of Education and Digital Learning 
53 | P a g e  

R. L. Sandefur, E. O. Laumann, A paradigm for social capital, Rationality and society 10 (4) (1998) 481–

501.  

Z. Maoz, Preferential attachment, homophily, and the structure of international networks, 1816–2003, 

Conflict Management and Peace Science 29 (3) (2012) 341–369.  

A. De Salve, B. Guidi, L. Ricci, P. Mori, Discovering homophily in online social networks, Mobile 

Networks and Applications 23 (6) (2018) 1715–1726.  

A.-L. Barabasi, R. Albert, Emergence of scaling in random networks, science 286 (5439) (1999) 509– 

512.´  

C. Hauff, A. Nurnberger, Utilizing scale-free networks to support the search for scientific publications, 

in: Proceedings of the 6th Dutch-¨ Belgian Information Retrieval Workshop (DIR 2006), Delft, 

Citeseer, 2006, pp. 57–64.  

O. Hein, M. Schwind, W. Konig, Scale-free networks, Wirtschaftsinformatik 48 (4) (2006) 267–275.¨  

M. E. Newman, A.-L. E. Barabasi, D. J. Watts, The structure and dynamics of networks., Princeton 

university press, 2006.´  

A.-L. Barabasi, E. Bonabeau, Scale-free networks, Scientific american 288 (5) (2003) 60–69.´ 


