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Abstract: This paper presents Robinson's diagram as a tool to address Skolem's criticism of 
formal language, which argues that there is no formal way to uniquely define any set of objects. 
Robinson's diagram symbolically represents information and captures the full "reality" of any 
given mathematical structure while making the formal language sufficiently comprehensive to 
fully express mathematical structure. The paper argues how Robinson's empirical and logical 
tools connect semantics and syntax, and epistemology, formal language, and existence. Robinson 
believed that we understand a concept only when we can describe it by a set of axioms that 
brings out the essence of that concept. A complete set of axioms fully describes a concept and has 
semantic as well as ontological significance. The paper also discusses the transfer principle, 
which asserts that any statement of a specified type which is true for one structure of class, is 
true also for some other structure or class of structures. Robinson's diagram has rightfully 
earned the title ‘diagram’ since it symbolically represents the syntactic as well as the semantic 
information of a complete set of axioms K and its intended model M. This paper shows how the 
diagram serves as a useful tool for locating unique models described by a set of axioms while 
preserving the classical notion of truth and reference without postulating non-natural mental 
powers. 
Keywords: Robinson's diagram, Skolem's criticism, formal language, mathematical structure, 
completeness, transfer principle, semantic, syntactic, ontology, epistemology. 
 
INTRODUCTION   

According to Wikipedia, a diagram is a symbolic representation of information, intended to convey 
essential meaning using visualization techniques. Although the word ‘diagram’ may suggest a 
picture, there was nothing pictorial about Robinson's use of this term in model theory. 
Nonetheless, Robinson's diagram is a symbolic representation of information. The diagram of a 
mathematical structure M1 is the set of all elementary sentences of one of the forms  or ¬  
which hold in M, where  = R(a1,….,an) for any R, a1,….,an which denotes relations of individuals 
a1,….,an, in M. The diagram formally expresses all possible basic relations between the elements of 
the structure. Therefore, the diagram represents the formal relationship of each one of the objects 
in the domain of the model M with all the other objects in this domain. For example, if the 
structure refers to the axioms of the concept 'the field of real numbers', with ℝ- the set of all reals 
as its domain, the diagram would include sentences2 such as  

2+2 = 4 and . 
1The basic idea of a mathematical structure is a set(or sometimes several sets) with various 
associated mathematical objects such as subsets, sets of subsets, operations and relations, all of 
which must satisfy various requirements (axioms). The collection of associated mathematical 
objects is called ‘the structure’, and the set is called ‘the underlying set’. From the model-theoretic 
point of view, structures are the objects used to define the semantics of first-order logic. For a 
given theory in model theory, a structure is called a model if it satisfies the defining axioms of that 
theory.   
2 Leon Henkin, in his dissertation, introduced the same idea, but did not use the term 
'diagram' (Dauben, 1995, 173).  

https://www.abstractmath.org/MM/MMSets.htm
https://www.abstractmath.org/MM/MMSets.htm
https://www.abstractmath.org/MM/MMMathObj.htm
https://www.abstractmath.org/MM/MMFuncExamples.htm#binaryoperation
https://en.wikipedia.org/wiki/Binary_relation
https://www.abstractmath.org/MM/MMOtherAspectsUnderstanding.htm#axiomaticmethod


Multidisciplinary Journal of Technology 

Vol. 1 Issue 1 October 2023 

ISSN: Pending… 

14 

In this paper, I wish to present Robinson's diagram as an attempt to overcome the problem of 
formal language, which was indicated in 1922 by Skölem as the "relativity of set-theoretical 
notions".3Skölem showed in this paper that there is no formal way— meaning a formal language in 
first-order logic and a set of axioms written in this formal language— to uniquely define any set of 
objects, such as the set of natural numbers, rational numbers or real numbers; in other words, 
there always exists an ‘unintended’ interpretation of any set of axioms. For example, PA must 
necessarily have only denumerable ‘intended’ models. However, this is impossible according to 
Löwenheim Skölem's theorem. No theory with an infinite number of domains can have only 
denumerable models.4 Therefore, first-order theories are unable to control the cardinality of their 
infinite models. Consequently, PA is non-denumerable in a relative sense: the sense that a relation 
R in a model, which is not the ‘real model’, cannot put the members of PA in a one-to-one 
correspondence with N5, the model we were referring to. Therefore, a set can be ‘non-
denumerable’ in the relative sense and yet be denumerable ‘in reality’. What constitutes a 
‘countable’ set from the point of view of one model may be an uncountable set from the point of 
view of another model. The existence of such models shows that the ‘intended’ interpretation, or as 
some prefer to say, the ‘intuitive notion of a set’, is not ‘captured’ by the formal system. Therefore, 
the formal language of PA is inadequate for the task of giving a complete characterization of the 
concept of 'natural numbers'. However, if axioms cannot capture the ‘intuitive notion of a set’, 
what could possibly capture them?  
In this paper we show how Robinson's diagram can help overcome this issue by reflecting the 
nature of each object in the formal language itself. In order to achieve this goal, we address 
Robinson's empirical as well as his logical tools. We also argue that this resolution of the ‘relativity 
of formal language’ fits well with Robinson's philosophical point of view, which linked 
epistemology, formal language and  
3 In 1915, Leopold Löwenheim proved that if a first-order sentence has a model, then it has a 
model whose domain is countable. In 1922, Thoralf Skölem generalized this result to whole sets of 
sentences. He proved that if a countable collection of first-order sentences has an infinite model, 
then it has a model whose domain is only countable. This is the result which typically goes under 
the name of the Löwenheim-Skölem Theorem.  
4 If a countable first-order theory has an infinite model, then for every infinite cardinal 
numberκ it has a model of size κ, and no first-order theory with an infinite model can have a 
unique modelup to isomorphism. 
5 Skölem showed the weakness of formal language by means of a suitable construction of 
proper extensions of the system of natural numbers PA. This extension has the properties of 
natural numbers to the extent that these properties cannot be expressed in the lower predicate 
calculus in terms of quality, addition, and multiplication. These extensions of natural numbers are 
called ‘the nonstandard models of arithmetic’. In addition, the Löwenheim-Skölem theorem 
showed that a collection of axioms cannot determine the size of a model: Every collection of 
axioms having an infinite model also has models of every infinite lanidrac. An example of a 
nonstandard model of arithmetic is:   
…….  1,2,3,4….  1,2,3,4….   1,2,3,4….  1,2,3,4 ….           

existence.1 Using formal language and logic as tools, together with the philosophical position that 
links semantics and cirnalndl on one hand and epistemology, formal language, and existence on 
the other, will enable us to preserve the certainty of the classical notion of truth and reference 
without postulating non-natural mental powers.2 

                                                 

 
2 Since Robinson was concerned with objectivity and therefore in objective concepts, he was very interested in methods for 

completing formal systems and defining tests for verifying their completeness.  

https://en.wikipedia.org/wiki/Theory_(mathematical_logic)
https://en.wikipedia.org/wiki/Interpretation_(logic)
https://en.wikipedia.org/wiki/Cardinal_number
https://en.wikipedia.org/wiki/Cardinal_number
https://en.wikipedia.org/wiki/Up_to_isomorphism
https://en.wikipedia.org/wiki/Up_to_isomorphism
https://en.wikipedia.org/wiki/Up_to_isomorphism
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The empirical perspective   

The way in which Robinson viewed how we are acquainted with objects was closer to the 
Intuitionist's position than to Hilbert's Formalist approach. Robinson emphasized the similarities 
between the investigation of physical objects on one hand and mathematical entities (elements, 
finite sets) on the other, stating that “The notions of a particular class of five elements, e.g., of five 
particular chairs, presents itself into my mind as clearly as the notion of a single individual (a 
particular chair, a particular table)” (Robinson 1964, p. 507). We use sensory perception to 
comprehend concrete objects, but it appears that a kind of abstraction is involved at even the 
lowest level of sensory object awareness. In the ordinary sense of perception, we are not directed 
toward sensory materials; rather, we are directed towards objects that are experienced as identical, 
i.e., objects that are formed or synthesized because of this type of intuition. The property of an 
object that we grasp directly by our intuition yields the meaning of that object. Recognizing an 
object fully thus makes us know that object, and knowing an object assures us of its existence. 
From this perspective, there is a similarity between the analysis of mathematical and physical 
objects.  
Diagrams as an intersection of semantics and syntax  

Robinson, unlike Frege Carnap and Russell, did not believe that mathematics is based solely on a 
meaningless formal language and several rules of deduction and that therefore syntax itself 
belongs to the realm of uninterpreted formal language. Robinson justified his position by arguing 
that if we adopt this policy then well-formed formulae can be regarded as inscriptions that are 
created gradually at the whim of the writer but constitute rigid totalities or sets. According to 
Robinson, when it comes to mathematics, semantics and syntax cannot be distinguished. Formal 
language always has meaning, albeit sometimes hidden, which we cannot avoid. It is true that 
sometimes it is easy to get the impression that formal language is meaningless, but this is never the 
case. The secret desire to interpret sentences or groups of sentences existed long before the logical 
concepts involved became explicit. One may even assume that the relations and constants of 
structure are inherent to language and denote themselves (Robinson 1956, 6).  
Diagrams are an empirical tool. Robinson believed that the basic structure of the mathematical 
world was also the structure of mathematical logic. There are ‘atomic facts’ that are the simplest 
components of the mathematical world. These atomic facts can be described with the help of 
elementary sentences.  First, it is necessary to know the atomic facts, meaning the relationships of 
each mathematical object to all the other mathematical objects, and only then is it possible to 
describe them in a formal language. This formal language description uses only elementary 
sentences, which describe the function of each object. 3  The coordination between the 
mathematical world and formal language allows describing the world precisely with formal 
language.   
Therefore, relations of designation provide the connection between individuals and relations, and 
the symbols of formal language which denote them. In many contexts, it is perfectly legitimate to 
suppose that this correspondence is reduced to identity. The somewhat dogmatic approach to the 
problem of denotation, which requires a rigid distinction between name and object, is no doubt 
appropriate to cities and names of cities (e.g., Jerusalem and ‘Jerusalem’) but is not essential when 
transferred to mathematical entities (Robinson 1964, 517).    
These ideas are reflected in the concept of the diagram, which belongs to both formal language and 
to its model at the same time. Since a diagram is a collection of elementary sentences and 
negations of elementary sentences, it belongs to formal language. However, the symbols of objects 
in the sentences that belong to a diagram denote themselves, and therefore they belong to the 

                                                 
3Of course, there is no technical impediment to defining these enormous languages. But model theory in this context is 

regarded as merely a branch of pure mathematics, and therefore there is no real reason to worry about any of this.  
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realm of semantics as well. Consequently, the expression R(a1,….,an) becomes a statement of and 
about language and is defined in M. Therefore, it reasonable to understand why Robinson believed 
that formal language is sufficiently comprehensive to fully express the structure M, and as a result 
to identify a structure with its diagram. At this point, the distinction between formal language and 
its model, if it exists at all, is not sharp.   
In light of the above, Robinson’s concern regarding the connection between the structures he was 
working with and the languages used to describe them is understandable. At least in the 1950's and 
early 1960's, the philosophical position Robinson adopted was "a fairly robust philosophical 
realism" (Robinson 1950, 3), by which he meant the acceptance of the full ‘reality’ of any given 
mathematical structure. Therefore, Robinson described structures not to justify their ‘reality’ or 
‘existence’, since their existence was taken for granted; rather, Robinson attributed an equal 
degree of reality to a mathematical structure and to the language within which it is described 
(Robinson 1979, 10).  
Consider for example the assertion that there is a one-to-one correspondence between numerals 
and natural numbers (or, alternatively a many-one correspondence). Evidently, the notion of a 
numeral here does not refer to inscriptions (or tokens) since the number of inscriptions that have 
been written down is finite and can even be estimated. Accordingly, even a numeral must be an 
abstract entity and may, for example, be the corresponding number. However, we are still faced 
with the problem of describing the connection between numbers or numerals and the related 
inscriptions or tokens (Robinson, 1964; in Keisler, H. et al. eds., (1979), 2:517).   
Diagrams as a tool for pointing at objects   

Given this general model-theoretic picture of mathematical systems, objects, and their properties, 
the question that arises is "if and when do mathematical properties qualify as structural?" 
Intuitively, a structural property is a property that a mathematical object has in virtue of or 
because of its structure, meaning that its relationship with other objects can be formally 
characterized. As should be clear, this means different things for systems and for the elements of 
such systems: A structural property of a system is a property the system has because of its internal 
structure. It tells us something about the structural composition of the system.4 In the case of 
elements in structured systems, in turn, structural properties are properties that express 
information about the role of the elements in the overall structure of the system. Put differently, 
these are properties that a particular element has because of its contextual structure, i.e., the 
relation in which it stands with the other elements of the system it belongs to.  
Robinson emphasized the similarities between the investigation of physical objects on one hand 
and mathematical entities (elements, finite sets) on the other, stating that “The notions of a 
particular class of five elements, e.g., of five particular chairs, presents itself into my mind as 
clearly as the notion of a single individual (a particular chair, a particular table)” (Robinson 1964, 
p. 507).   
We use sensory perception to understand concrete objects, but it appears that a kind of abstraction 
is involved at even the lowest level of sensory object awareness. In the ordinary sense of 
perception, we are not directed toward sensory materials; rather, we are directed instead towards 
particular objects that are experienced as identical, i.e., objects that are formed or synthesized as a 
result of this type of intuition. The property of an object that we grasp directly by our intuition 
yields the meaning of that object. Recognizing an object fully thus makes us know that object, and 
knowing an object assures us of its existence. From this perspective, there is a similarity between 
the analysis of mathematical and physical objects. The intuition to which Robinson refers, at least 
the basic one, is the same as that of Kant's sensible intuition, i.e., the immediate capture of an 
entire object, even though the objects that Kant discusses are naturally different. In any case, 

                                                 
4 The following is an example of the structural property ‘additive inverses’: For every a in F, there exists an element in F, 

denoted −a, called the additive inverse of a, such that a + (−a) = 0.  
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Robinson's intuition is epistemic and ontological, corresponding to Kant’s view. Its diagram can 
describe objects that can be grasped directly, and therefore are known by us.   
However, denoting objects by giving them names is not enough; we want to make sure that 
different names really point at different objects, to be sure that ‘a’ and ‘b’ do not indicate the same 
object. Pointing at objects using formal language enables distinguishing between different objects 
by naming their varying functions in a system.  
This can be done with the help of the set of all elementary sentences and the negation of 
elementary sentences in which the object we wish to denote appears. Every elementary sentence or 
negation of an elementary sentence expresses all the possible relationships between the object that 
is being pointed at and the rest of the objects in the domain. This collection of elementary 
sentences belongs in the diagram.  
I also claim that this description defines a denotation in M for a term in the language and 
corresponds to what Robinson meant by denoting an object as ‘a’.  According to Robinson, a 
description is a name and has a denotation only when there is a unique object that satisfies its 
defining condition (Robinson 1979, 493).5 There is no distinction between well-formedness and 
interpretability of the elementary sentences in the structure. Since the description of an element is 
the collection of elementary sentences, there is no question that the description in question has a 
denotation. Still, how is it possible to know that two different individuals ‘a’, ‘b’ in the language 
denote different objects? In other words, concerning the diagram, how we can be sure that the 
diagram is a good enough tool to describe each individual in the domain uniquely?6 Let A, B, be 
the collections of all elementary or negation of elementary sentences that represent the objects ‘a’ 
and ‘b’ respectively. Then, ‘a’ and ‘b’ denote the same object if and only if, the instance ‘a’ can be 
replaced by the instance ‘b’ in each and every sentence in A, so that we obtain A—and vice versa, 
whenever the instance ‘b’ can be replaced by the instance ‘a’ in each and every sentence in B, so 
that we obtain B. Therefore, it is fine to switch ‘Scott’ and ‘the author of Waverley’ and vice versa 
without worry.   
We have shown how to define an object uniquely. However, we have not yet dealt with the really 
troubling question, which is how using a diagram can help to overcome the problem of formal 
language, meaning how can it enable us to determine the ‘intended’ models without determining 
any other models at the same time.  
Top to bottom 

So far, the discussion focused on denoting objects. Following Robinson's ideas concerning 
denoting an object and Quine's famous dictum of “no entity without identity”, mathematical 
concepts also call for a specification of their identity conditions. Accordingly, when  is it  possible 
to commit and say that two mathematical concepts are identical?   
Robinson claimed that the origin of the intuition of concepts, just like the intuition of objects, lies 
in empirical experience, but not necessarily experience of the external world. After we have 
grasped a concept by intuition, we try to understand it by reason. Robinson's opinion was that we 
understand a concept only when we can describe it by a set of axioms that brings out the essence of 
that concept. An essence is just an invariant or identity that remains the same despite variation.7 

                                                 
5 The paper "On Constrained Denotation" was written in order to deal with the question regarding a description being a name. 

Robinson objected to Russell’s rejection of the notion that a description is a name. Thus, the description "Scott is the author of 

Waverly" can be a name of someone even if he did not write Waverly. (Robinson 1979 2, 493)  

 
6 Robinson expanded the formal language by adding the descriptor i, so that a description is a term of the form t = [ixQx]. Q is 

called the scope of t. But his definition of a denotation of description is purely semantic. (Robinson 1979 2, 495)  
7 This idea originates from phenomenology: Edmund Husserl claims that we can intuite essences, and moreover, that it is 

possible to formulate a method for intuiting essences. Husserl calls this method 'free variation in imagination' or 'ideation'. 

Tiezsen (2005, p. 154) claims—and I agree with him—that the best and clearest examples of this method are to be found in 

mathematics. If I start squishing a circle, for example, we might ask which properties of the circle change and which remain the 
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Only when we have a complete set of axioms can we have knowledge of a concept and say that it 
exists objectively, independently of our mind. Robinson maintained that mathematicians believe 
in the objective truth of mathematical theorems because they accept the objective existence of 
mathematical entities.  A complete set of axioms has semantic as well as ontological significance.   
The way in which Robinson viewed how we are acquainted with objects was closer to the 
Intuitionists’ position than to Hilbert's formalist approach. Here I wish to explain what the 
intuition of objects meant to Robinson and why he argued that concepts such as ‘natural numbers’ 
or an ‘algebraically closed field’ cannot be grasped as an object. The property of an object that we 
grasp directly by our intuition yields the meaning of that object. This implies that any meaningful 
question regarding the object will necessarily have a unique answer. Recognizing an object fully 
thus makes us know that object, and according to Robinson, knowing an object assures us of its 
existence. Therefore, Robinson believed that there is harmony between being and thought. A 
complete formal system represents for Robinson a fully defined concept, a concept whose 
properties are well understood by us. Robinson believed that a well-defined concept is an objective 
concept, which is the opposite of a subjective concept, which is a concept that is not fully defined. 
A complete set of axioms describes the roles governing the realm of the objects. The domain is 
unique, up to isomorphism, determined by its formal system, which uniquely determines the 
formal form of its domain.     
While a collection of elementary sentences determines an object, a theory—which is a consistent 
set of axioms—characterizes a concept. For instance, the set of axioms ZFC defines the concept set. 
A theory ‘K’ is said to be a completeset of axioms if and only if for every sentence , which is 
defined in K, one and only one of the following statements  or  is derivable from K. A 
complete set of axioms K fully describes a concept. As is already known, according to Skolem, even 
when the set of axioms is complete it still possesses many different models. Therefore, the goal is 
to formally determine the 'intended' model so that only one model will be obtained, up to the point 
of isomorphism.  
The set of axioms K determines the set of objects that can furnish the domain of its models. In the 
models of our concern, each one of the entities is represented in formal language, and its features 
can be described with the help of a collection of elementary sentences that belongs to the diagram 
of the model. Therefore, a complete set of axioms has syntactical as well as semantic and 
ontological weight. The syntactical meaning is trivial since the formal language of K determines 
their expressiveness, and  their expressiveness determines their meaning. As stated earlier, 
according to Robinson there is no clear distinction between the objects in the model M and the 
constant representing them in the language.  
Structure M is said to be a model of a set of statements K, if all the statements of K are defined in 
M and hold in the domain of M. Since the diagram of M is a collection of statements of the form 
R(a1,….,an)  and ¬R(a1,….,an) that hold in M, then it makes sense to accept the idea that a 
mathematical structure consists of a set of statements, and to identify a structure with its diagram. 
As reflected from the above, diagrams fulfill a very important role concerning the blurred 
boundaries between language and meaning:  It was stated at the beginning that we attributed an 
equal degree of reality to a mathematical structure and to the language within which it is 
described. Accordingly, we may introduce notions, which are defined partly with reference to a 
given algebra of axioms, and partly with reference to its models. (Robinson 1950, 693)  
Model complete 

Although Robinson was working with formal languages, these were used merely to describe 
structures, not to justify their ‘reality’ or ‘existence’, which were taken for granted by him. 
Robinson was especially concerned with the connection between the structures he was working 

                                                                                                                                                                              

same. It is unfortunate that Husserl does not give examples invoving mathematics, but he does describe the methods of ideation 

in a number of his writings. Tiezsen describes the method of variation in detail (see Tiezsen 2005, pp. 154-6).    

https://en.wikipedia.org/wiki/Completeness_(logic)
https://en.wikipedia.org/wiki/Completeness_(logic)


Multidisciplinary Journal of Technology 

Vol. 1 Issue 1 October 2023 

ISSN: Pending… 

19 

with and the language used to describe them. This was particularly true in the case of the results 
Robinson presented, which were formulated from the axioms in a formal language and then 
related back to structures, especially if we refer to a model as a set of sentences to establish 
theorems. It is important to emphasize once again that the languages we are dealing with here are 
only languages where every element has a corresponding, individual constant.     
The key notion that links formal language with its model is the concept of model completeness.Let 
K be a non-empty consistent set of statements. Thus, K will be called model complete if for 
every model M that contains no relations other than the relations of K, the set K N, where K is a 
set of axioms and N being the diagram of model M, is complete.  K N being complete also 
amounts to the statement that for every  which is defined in any model M of K, either  or  
holds in any extension of M which is a model of K (Robinson, 1956, 13).8 
The importance of using k as  model complete set of sentences k here is K N is a complete set of 
axioms that is inseparable from its model. Using some of Robinson's techniques, which are defined 
partly with reference to a given set of axioms and partly with reference to its models, it is possible 
to describe the 'intended' model and only it.  Note: The concepts 'completeness' and 'model 
completeness' are not comparable, and they do not include one another. For example, let K be a set 
of axioms for the concept of algebraically closed fields. K is not complete since the statements 
touching upon the characteristic of the field (e.g., “the sum of any two elements equals zero”) are 
not decidable in K; nonetheless, this concept is model complete. The theory of dense linear orders 
with endpoints, for example, is complete but not model complete. Let the domain of M be [0,1] and 
let the domain of M' be [−1,1]; 0 is the least element of M, but 0 is not the least element in the 
extension M' of M.  
Sometime model-completeness entails completeness.14 In order to establish the condition under 
which model-completeness entails completeness, the concepts elementary extension, elementary 
embedded and prime model will be introduced.   Theorem: In order for a nonempty consistent 
set of statements K to be model complete, it is necessary and sufficient that for every pair of 
models of K, M and M', such that M' is an extension of M, any primitive9 statement  which is 
defined in M can hold in M' only if it holds in M (Robinson, 1956, 16).10 Every model M' which is 
an extension of M is a model of K N, and conversely, every model M' of K N is a model of K and 
is an extension of M. Now, from this theorem, it seems that any structure M' is an extension of M if 
and only if M' is a model of the diagram N of M.    
M M', M' is an elementary extension of M, and M is elementary embedded in M', if for 
every formula ϕ(x) and every tuple b in M' we have M⊧⊧ϕ(x)   M'⊢ϕ(x). If K is model complete, 
then if M and M' are models of K and M M', then M' is an elementary extension of M'. For 
instance, the theory of analgebraic closed field is model complete; therefore, every embedding of a 
model of this theory is elementary embedded. However, the theory of analgebraic closed field is 
not complete because the characteristic of the field is missing.    
Prime model: A structure M0 is said to be a prime model of a set of axioms K if M0 is a model of 
K and M contains the partial structure M0. Hence, M0 is said to be a prime model if M0 is 
elementary embedded in every model of K. For example, the field of rational numbers is a prime 
model of the set of axioms K for the concept of a  

                                                 
8 Robinson defined the concept of the diagram in several more papers; one example is the paper  "Completeness and Persistence" 

(Robinson 1979 1, 3)  
9 A well-formed formula  is primitive if it is of the form = x1 x2….. xn (x1,x2….xn), where  is a conjunction of elementary 

formulae with or without free variables or negation of same.   

 
10 Let M and M' be two structures, and let P and C, and P' and C' be the set of relations and constants on which these two 

structures are based, respectively. Then M' is said to be an extension of M if P P', C C', and if for all R(x1….xn) P a1….an C, 

the relation R(x1….xn) holds in M' if and only if it holds in M. Also, under these conditions, M is called a partial structure of M'.   
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he claim I would like  to present is that if  K N is model completeness and has prime model then  
T14 then K N is complete.    
commutative field of characteristic zero. Note that no prime model exists if the characteristics of 
the field are not specified (Robinson 1956, 72).  
The prime model is unique. Robinson proved that if M and M' are two prime models such that 
for every sentence , either  or  holds in both M and M', then M is isomorphic to M'. The 
prime model is unique up to isomorphism. Since in the languages of the present discussion, each 
object in the model coincides with a constant of the language and every constant which appears in 
the language presents an object from the model, the prime model is unique (Robinson 1959, 275).  
The prime model test: Let K be a model-complete set of statements which possess a prime 
model M0, then K is complete. (Robinson, 1956 74). Let K be a set of axioms  written in the 
language L, which contains every constant in M, M being a model of K.  
The set K N, N being the diagram of M, is complete, since every M possesses a unique prime 
model N.  This is because the pairing between objects of the same name in any two models M, M' 
of K N is isomorphic. Therefore, K is model complete. In addition, since the diagram N of M, a 
model of K, is also the diagram of every model M', which is an extension model of M, and N  M0, 
K is also complete11,12 (Robinson 1956, 734). Therefore K, together with its diagrams, creates a 
syntactic reflection of its models. It is important to notice that because the diagram depicts the 
direct structure of M,  the theory K is more than complete, because the structure of each model 
complements K. The prime model is the most economical characterization of the structure  of all 
the models of a complete set of axioms K.  
However, from Skolem's Theorem we already know that even a complete set of axioms K written 
infirst-order logichas infinite models from different cardinalities, meaning that even a complete set 
of axiom has many non-isomorphic models. Therefore, even a complete set of axioms K does not 
uniquely describe any set of objects. For example, the 'world of order and a closed real algebraic 
field' describe infinitely many worlds of reals. When a complete set of axioms K N is given, N is 
the diagram of M, which is a model we wish to describe, written in the language L, which contains 
constants that coincide with the objects of M. Accordingly, N is a unique up-to-isomorphism 
model, which is the model we wish to describe. Therefore, we obtain that M  N.    
The tight connection between diagram, persistence, prime model and transfer principle sharpens 
the task and place of M0, the prime model of K N, among the class of models  
{M} of K N.   
Diagram, persistence, prime model M0 and the transfer principle  

Top-down perspective   

The transfer principle is a metamathematical theorem that asserts that any statement of a 
specified type which is true for one structure of class, is true also for some other structure or class 
of structures. The type of sentences that are of interest in the present context are the elementary 
sentences or negation of elementary sentences that belong to the diagram N of M, which is the 
desired model. If a sentence N is true in at least one model of K N, then it is true in every 
model of K N.  Thus, the proposition that a particular set of axioms K is complete and has a 
prime model (which is the diagram N) may be expressed in the form of a transfer theorem, since it 
amounts to the assertion that any sentence which is defined in K and which holds in one model of 
K, holds also in all other models of K.       

                                                 
11 This follows immediately from the following theorem: Let M0 be a prime model of the set of statements K, and let N be the 

diagram of M0. Then any statement  which is defined in K and is deducible from K N, is deducible also from K alone. Since, if 

K is at the center of the discussion and N  M0, it can be deduced that K is complete.   

 
12 It seems that Robinson used the diagram and the concept 'model complete' in order to determine the conditions under which 

various theories are complete and decidable.   

https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/First-order_logic
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For example, the completeness of the theory of algebraically closed fields of a fixed characteristic 
means that every sentence in the language of fields which holds in one algebraically closed field 
will also hold in all other algebraically closed fields of the same characteristic. An interesting 
point concerning  K N being model completeness is that  every   K N formula  is 
equivalent to an existential formula. K N is existential close. 13  This type of sentence 
describes the meaning and the function of the objects in the model.    
K N is complete and model complete as well. K N possesses a prime model, which is the 
intersection of all the models of K N. K N contains the diagrams of the class of models of K N. 
Since the language of K contains all and only the constants belonging to N, N is the prime model 
which coincides with the intended of K N model M.   
Bottom-up view  

Another concept of model-theory that has a bearing on completeness and model completeness is 
that of persistence. A sentence Q(a1,a2,…… an) is called persistent with respect to a given set 
of sentences K, if for any set of constants a1,a2,…… an which belong to a model M of K, Q(a1,a2,….. 
an) holds in M only if it holds also in all other models of K which are extensions of M. An 
equivalent definition is that for any model  
M of K "Q(a1,a2,…… an) holds in M" should entail "Q(a1,a2,…… an) is decidable from K N" where N 
is the diagram of M. The definition can be extended to any sentence. A sentence  is persistent 
with respectto K, if for every model M of K which satisfies ,  

 is deducible from K N. (Robinson, 1979, 112).   
Theorem: For a set of sentences K to be model complete, it is necessary and sufficient that for 
every model M of K, from the set K N, every elementary sentence or negation of elementary 
sentence which is defined in K N is decidable in K N.   
Since all models M of K share the same diagram N, N is also the set of all persistent elementary 
and negation of elementary sentences defined in K. Here is an example of an application of the 
transfer principle: Any sentences formulated in M that hold in M0, hold in any other model of 
K N, and M0 N.  
SUMMARY AND CONCLUSIONS.   

This paper presents a possible way to address Skolem's criticism of formal languages using 
Robinson's tools, taken from model theory, such as diagram, model complete and prime model. 
The existence of different models that are not equivalent even to a complete formal system K is 
very disturbing, because the immediate consequence is that it is not possible to uniquely describe 
what a natural number is using the formal language L.  
Robinson believed that symbols in the formal system have a meaning that we cannot avoid. As he 
regarded semantics to be a part of mathematics, it was therefore possible and important for him to 
unite semantics and syntax into a single formal system. Robinson called this formal system ‘a 
diagram’. Robinson thought of a diagram as a link between a formal system and its model. When a 
set K of axioms is complete, then K together with its diagram create a syntactic reflection of this 
model. According to Robinson, sometimes there is no distinction between syntax and semantics, 
since one may even assume that the relations and constants of the structure belong to the language 
and denote themselves (Robinson 1956, 6).   
The actual knowledge that a set of axioms is complete and also model complete enables us to 
define the desired model up to isomorphism. This is possible thanks to the formal language L used 
here, which contains constants that coincide with the objects of the model we wish to describe. The 
prime model M0, which in this case is M0 N  { |  is persistent elementary or negation 
of elementary sentences}, is equal to {M| where M is a model of K N}. M0 is 

                                                 
13Since the language of K contains all the constants which exist in model M, then from a logical point of view, model 

completeness is a way of concealing quantifiers.  
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elementary embedded in any model of the complete set of axioms K N. M0 is the unique, up to 
isomorphism, of the desired model of K.    
A formal system has some limitations (for instance, it cannot describe the object behind a name). 
Sometimes an object is perceived intuitively, and our knowledge of it is more than its function in a 
system. For example, the number ‘1’ is an object which we perceive by intuition. We know more 
about this number than its function in the system (i.e., that it exists as a single unit in a linear 
group of multiplication). Intuition is often subjective (for instance, Husserl perceived the number 
‘1’ differently from Gottlob Frege or Luitzen E. J. Brouwer). These different intuitions cannot be 
depicted by a formal system.   
Robinson's diagram has rightfully earned the title ‘diagram’ since it symbolically represents the 
syntactic as well as the semantic information of a complete set of axioms K and its intended model 
M.   
Robinson believed that one of the goals of mathematics should be a deeper understanding of its 
concepts. Perhaps a more profound comprehension of these notions will eventually lead to 
advancement in the philosophical understanding of logic and mathematics, concepts which in 
recent years have been overshadowed by technical achievements.   
According to Robinson, logic serves as wings to mathematics, allowing it to fly. (Robinson, 1964a, 
220). I hope that the discussion presented here regarding Skolem’s critique of formal languages is 
an example of this saying.  
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