
Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
1 | P a g e

INTRICACIES OF SAFETY: A MULTI-VARIANT ANALYSIS

WITH K-VARIANT ARCHITECTURE FOR WEB SERVICE AND

APPLICATION SECURITY ENHANCEMENT

Christopher Michael Adams

Department of Computer Science, Illinois Institute of Technology

Abstract
The K-Variant Architecture is proposed as a cost-effective approach for enhancing the security of
web services and applications against memory exploitation attacks. Memory-related
vulnerabilities continue to be a major concern, even for web services implemented in memory-
safe languages. To address this, the K-Variant Architecture uses source code-level program
transformations to generate variants, providing statistical security against memory exploitation
attacks through critical data diversification in memory. Unlike the N-version architecture, which
is limited to mission and safety-critical systems due to its high cost and difficulties in verifying
versions, the K-Variant Architecture offers a low-cost alternative with diversity in critical data to
improve system security against memory exploitation attacks.This paper presents the high-level
design of the K-Variant Architecture, program transformation techniques, and implementation
details for web services and applications. The proposed K-Variant Architecture is demonstrated
as an object-oriented design utilizing three classes, namely Client, ServiceDirectory, and
EngineMotor, to provide critical data diversification in memory for web services. The program
transformation techniques used in the K-Variant Architecture and their suitability for web
services are also discussed. The overall architecture's implementation details are provided,
including the use of various program transformations, the deployment of variants on different
operating systems, and the compilation of variants depending on the programming language.In
conclusion, the K-Variant Architecture is proposed as a cost-effective approach for improving the
security of web services and applications against memory exploitation attacks. The proposed
architecture provides critical data diversification in memory, improving the system's
survivability against memory exploitation attacks. The use of safe and automated program
transformations in the generation of variants makes system development cost-effective.

Keywords: K-Variant Architecture, program transformations, memory exploitation attacks,
critical data diversification, web services, object-oriented design.

INTRODUCTION

With the proliferation of e-commerce platforms, businesses must develop more reliable and secure
systems to instill confidence in their consumers. Unreliable and insecure systems can result in the
loss of a large number of current and prospective customers. Additionally, businesses' reputations
may suffer due to unreliable and insecure web services. Additionally, businesses and organizations
may incur legal and financial liabilities as a result of service disruptions or failures. For these
reasons, more secure web services and applications are required.
Most web services and applications are written in memory-safe languages such as Java and C#.
Therefore, the risk of memory exploitation attacks on those systems is low. However,
highperformance websites and applications still use machine-compiled code like C++ and C to
make services or applications fast to start up and execute. Memory-unsafe languages can improve
the performance of web services and applications. On the other hand, they can be exposed to

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
2 | P a g e

memory exploitation attacks. Exploiting a buffer overflow vulnerability may allow adversaries to
corrupt web services, expose confidential information, or execute malicious code.
Buffer overflow vulnerability attacks may still be possible even if a web service or application is
coded in a safe memory language because the interpreter and libraries can be written in unsafe
languages. For example, PHP is a scripting language that is not itself affected by memory
exploitation attacks. However, the PHP interpreter is written in the memory-unsafe C
programming language. Therefore, systems can be affected by memory-related attacks [1]. Another
example is a memory-safe Java application that uses a compression library written in the memory-
unsafe C programming language. The library can allow overwriting of the Java executable file by
exploiting a buffer overflow vulnerability. These examples show that services and applications
written in a memory-safe language can be exposed to memory exploitation attacks. Therefore,
memory-related vulnerabilities should be considered in web services and applications requiring
high security.
The CVE Details vulnerability database [2] shows that reported memory-related vulnerabilities
have increased recently. Newly discovered memory-related vulnerabilities in popular web servers
allow attackers to corrupt services and override existing files and executables. Although developers
and communities provide patches for new vulnerabilities, many unreported vulnerabilities still
exist and are exploitable by attackers. Therefore, architecture-level security may be required for
web services and applications that require high security.
Fault tolerance architecture is one of the methods to improve the reliability and security of
software systems through redundancy. Diversity in design, programming languages, and operating
systems can be achieved to produce spare components and programs. The N-version architecture
is one of the fault tolerance architectures that appeared in the 70s to improve mission-critical
systems' reliability and security. However, high reliability and security are also required in web
services and applications for companies and organizations to provide more confidence to their
customers and users. Moreover, some companies may pay a monetary penalty when their systems
fail because of unreliable components or cyber-attacks.
In the N-version architecture, multiple versions of a program are developed by different
developers that usually do not share anything except software specifications. Each version may
have different designs and may be developed in a different programming language. So, it is
expected that each version has different vulnerabilities. If one of the versions fails because of the
exploitation of a vulnerability, the other versions may continue to operate as expected. The
apparent disadvantage of the N-version architecture is its high cost. The cost of a project may
double or triple for the second and third variants, respectively. Generating more than three
variants is unlikely if the system is not mission or safety-critical. Another side effect of the N-
version architecture is the verification of each variant. Especially for large programs, it is
challenging to verify that each version is functionally equivalent, especially for large programs.
The K-variant is an alternative architecture that takes advantage of the N-version architecture at a
reasonable cost. Variants in the K-variant architecture are generated by simple and safe source-
tosource program transformations. So, the cost of the variant-generation process is significantly
reduced. Program transformations in the K-variant architecture provide the diversity of critical
data in memory for each variant. In this way, the survivability of systems against memory
exploitation attacks is significantly improved [3]. In addition to memory level diversity in the
Kvariant architecture, diversity in the execution environment can also be achieved, similar to the
Nversion architecture [4]. Variants in K-variant systems can be deployed to different web servers

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
3 | P a g e

that may run on different operating systems. That may provide better security against memory
exploitation attacks.
The main contributions to this paper are as follows:
• A K-variant architecture for web services and applications is proposed.
• The high-level design of the K-variant architecture for web services and applications is
explained.
• Implementation of K-variant systems and other diversities such as operating system and
web server level in the K-variant architecture are discussed.
The remainder of this paper is structured as follows. Section 2 explains the related research.
Section 3 presents the K-variant architecture for web services and applications. Section 4 describes
the high-level design of the K-variant architecture for web services and applications. Section 5
briefly explains the program transformation techniques used in the K-variant architecture. Section
6 discusses the implementation details of the K-variant architecture for web services and
applications. Finally, Section 7 concludes and discusses future work.
RELATED RESEARCH

The reliability of web services was improved with a single version of a program by redundant data
and functions using SOAP [5]. This approach is based on procedure triplication [6], where
important procedures are triplicated to have the same signature but different implementations.
The fault tolerance is achieved by calling each procedure sequentially with similar inputs; then, all
results are voted by a majority algorithm.
Diversity is an important concept for improving the reliability and security of computer systems.
Diversity makes systems more robust against replicated attacks [7]. In addition, diversity may
tolerate accidental faults [8]. Diversity can be achieved at different levels, such as the interface
level, application level, execution level, hardware level, and operating system level. Address space
randomization [9], instruction set randomization [10, 11], DLL based randomization [12], stack
space randomization [13], heap randomization [13], calling sequence diversity [14], encrypted
instructions [15] are some of the diversity techniques that are used to improve security.
Diversity in architecture is one of the valuable techniques in fault tolerance. N-version
programming [16, 17] is a prominent architecture that is used to improve mission and
safetycritical systems. In N-version programming, multiple versions or variants of a program run
concurrently to perform a mission or an operation. Multiple versions or variants are generated by
different developers, only sharing software specifications. Different designs and programming
languages can be used when developing different versions or variants. Eventually, each variant will
have different vulnerabilities. Thus, if one of the variants is compromised because of an attack or a
bug, the other versions or variants may continue to operate successfully.
N-version programming is an expensive process. Developing the second and third versions can
double and triple the project cost. Besides the high cost, verifying the functional equivalence of all
versions is a challenging process. Even for two small programs, it is hard to prove that two
programs are functionally equivalent. For all these reasons, N-version programming is used only
in mission or safety-critical systems where very high reliability and security are required. However,
today, many business-to-business systems and profit or nonprofit organizations require high
reliability and security because failures of these systems may cause huge losses in profits and
prestige for them. Thus, N-version programming has started to be used in general-purpose
systems such as web servers. The source [4] proposes an architecture for dependable web services
using N-version programming. The prosed architecture uses design diversity and WS-BPEL (Web
Services Business Process Execution Language) to make systems more adaptable. A variety of

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
4 | P a g e

options for operating systems, web servers, application servers, database servers, programming
languages, and IDEs are provided to achieve design diversity. Another fault tolerance architecture
for web services is proposed in [18]. The proposed architecture is called FT-Web. In that
architecture, a request is sent to active replicas of services. A component responsible for managing
variants in the system analyzes received responses and decides the final response. A similar
architecture is also proposed in [19]. A transparent middle layer achieves fault tolerance by
sending requests to all replicas in the system. The middle layer also manages all variants, provides
consistency between variants, and decides the final response to clients.
The K-variant architecture was proposed in [20] to improve the security of time-bounded
missioncritical systems. The K-variant architecture is an alternative to N-version programming.
Unlike Nversion programming, all variants in the system are generated by automated, safe,
inexpensive program transformations. Since the variant generation process is automated in the K-
variant architecture, the cost of systems is significantly reduced.
K-variant architecture for web services and applications

In this section, the K-variant architecture for web services and applications and its components are
described. The K-variant architecture uses active replication to enhance security. Different
variants of a program are generated automatically by using program transformations. In this
paper, two versions of the K-variant architecture for web services and applications are explained.
The first version is static, in which all variants are generated and deployed when the system starts
up. The variants are never updated during runtime. The second version is dynamic, in which
variants can be updated during the execution time. The proposed architecture can easily be
switched between static and dynamic versions.

Figure 1 K-variant architecture for web services and applications.
The K-variant architecture for web services and applications consists of the following components.
Some of the parts are similar to the traditional N-version architecture for web services that is
shown in [4].
• Client: It is a user that requests service from the system. The Client may search for services
from the serviceDirectory, an indexing engine, to find registered services.
• ServiceDirectory: It is a directory to keep registered/published services in the system.
The Client looks up the ServiceDirectory to find available services and addresses of services. All
services can be indexed with unique IDs, service names, interfaces, specifications, and addresses.

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
5 | P a g e

• EngineMonitor: It is an interface that clients interact with to get services. The
EngineMonitor forwards requests to a controller to perform services. When there is more than one
Controller in the system, the EngineMonitor also decides on a controller based on various factors,
such as load balancing, the proximity of servers, etc. In the K-variant architecture, it is assumed
that the EngineMonitor is safe because of the single point of failure.
• Controller: It is the core component of the K-variant architecture. It is responsible for
managing variants, sending requests to variants, and voting for final results. The Controller
receives clients' requests from theEngineMotorand sends them to all variants in the system
simultaneously. In the Controller, a voting module is used to decide the final response to the
Client. There may be more than one Controller in the K-variant architecture to prevent a single
point of failure.
• VariantGenerator:It is a component that automatically generates variants using
program transformations. The used program transformations are simple and safe. Thus, no
additional software testing is required for automatically generated variants. The VariantGenerator
deploys variants to different servers or locations after generating them. The VariantGeneratoralso
has a timer for the dynamic model, in which variants are updated periodically during the runtime.
• Variant:It is a program that provides services. All variants are generated by the same
program by applying source-to-source program transformations. Increasing the number of
variants tends to improve the security of a K-variant system.
Figure 1 represents the high-level architecture of the K-variant architecture. The Client looks up a
web service by using a service's specifications in the ServiceDirectory. Then, the Client sends its
service request to the EngineMonitor. The service request can be synchronous or asynchronous
depending on the Client's application and the used protocol between the Client and the
EngineMonitor. EngineMonitordecides on one of the Controllers in the system and forwards the
service request to the selected Controller. The Controller sends service requests to all variants in
the system simultaneously. After the Controller receives all of the results from variants, it votes for
the final result. After that, the final result returns to the EngineMonitor. Finally, the Client
received the result of the requested service from theEngineMonitor.
The EngineMonitor and Controllers form a middle layer, which is transparent to clients. The
Client may not be aware of the number of variants, controllers, and engine monitors in the system.
The high-level design of K-variant architecture for web services

In this section, the object-oriented design of the K-variant architecture is demonstrated. Figure 2
shows the class diagram of the K-variant architecture for web services. The rest of the section
explains each method in each class and design details.

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
6 | P a g e

Figure 2. Class diagram of the K-variant architecture for web services.
Client Class: It has a process() that invokes searchService() from the ServiceDirectory to look up a
service. Then, the process() calls serviceInterface() from EngineMotor to get the service.
ServiceDirectory Class: Offered services are published and unpublished by the register() and
unregister() methods, respectively. Service specifications, including service name, ID, and
interface, are provided when registering a web service. An internal data store (serviceList) may be
used to keep service data. searchSerive() finds and returns the name of a published service from
the serviceList by using service specifications.
EngineMotor Class:serviceInterface() provides an interface for the Client to get a service.Service
name and parameters may also be sent when calling serviceInterface(). selectController() and
forwardService() are called inside serviceInterface(). selectController() selects one of the
controllers from the controllerList. That selection can be random. Also, different factors, such as
load balancing, server proximity, etc., may be considered when selecting a controller.
forwardService() forwards the service request with the required service parameters to the selected
Controller.
Controller Class: register() and unregister() methods can add and remove variants from the
variantList, which is a data structure to keep variants' information such as variant addresses,
specifications, etc. callService() calls a requested service to all variants in the variantList. After
receiving responses from all variants, the vote() method is called to decide the final result. Any
voting mechanism that is used in the N-version architecture can also be used in the K-variant
architecture.
VariantGenerator Class: It appliesProgramTransformation() method that takes the original
source code and generates a variant by applying a program transformation. The strategy pattern
[21] is used to apply different program transformations. The strategy pattern allows adding new
program transformations with a minimum change in design. Program transformation classes
include the implementation of different program transformations, which are called in
applyProgramTransformation(). After generating new variants, they are deployed to different
locations using addresses in the variantList. Depending on the programming language, the source
codes of variants may need to be compiled. Thus, variant programs may be compiled, and
executable files are deployed in different locations.
ProgramTransformation classes: These classes are related to the strategy pattern. Different
program transformations are implemented in these classes. applyProgramTransformation() is a
method that applies a specific program transformation.
Variant classes: They contain the implementation of web services. service()is a method that calls
process() to perform a web service.

Figure 3. Original Program

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
7 | P a g e

Program transformations for the K-variant architecture

Variants in the K-variant architecture are generated by applying source-to-source program
transformations. The goal of program transformations in the K-variant architecture is to shift the
vulnerable memories in each variant. By applying memory shifter program transformations [22],
the addresses of vulnerable memory will not be totally overlapped. This approach may improve the
security against memory exploitation attacks. If one variant in the system is compromised because
of an attack on vulnerable memory, the other variants may continue to deliver expected services.
All program transformations that are used in the K-variant architecture have the following
common features:
• They do not impact the functions or behaviors of programs.
• They shift the vulnerable data to different locations.
• They do not cause additional bugs in a program.
• The transformed program does not need significant software testing.
• The original source code is preserved as much as possible. They have acceptable memory
and runtime overheads.
In this section, program transformations that have been used in the K-variant architecture are
briefly explained. These program transformations were explained in detail [22].
Inserting dummy buffers

It was the first program transformation for the K-variant architecture [20]. In this program
transformation, a random number of dummy buffers with random sizes are inserted into the
source code. A dummy buffer is a buffer that is defined but never used. A dummy buffer does not
affect the program's execution, but it takes up space in the memory.
Dummy buffers can be inserted after the existing buffers in the source code. That may prevent
potential buffer overflow vulnerabilities. An example program transformation of inserting dummy
buffers is shown in Figure 4. In the example, a dummy buffer is inserted after the existing buffer in
the original source code, which is shown in Figure 3. When a buffer overflow occurs in buffer1, the
dummy buffer is manipulated instead of the critical data, which may affect the program's
outcomes.

Figure 4. Inserting dummy buffers. The source code after the program transformation.
In this program transformation, any number of dummy buffers of any size can be inserted into the
source code. The only limitation of this program transformation is the machine's memory size on
which a variant runs.
Expanding the size of existing buffers

In this program transformation, random existing buffers are expanded by random sizes. Unlike
inserting new dummy buffers, expanding the size of existing buffers provides more control over
shifting vulnerable memory. New dummy buffers may not be placed next to existing buffers in
some systems. In that case, inserting new dummy buffers may not prevent buffer overflows. On the

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
8 | P a g e

other hand, the location of unused buffers can be easily determined with respect to the existing
buffers by expanding the size of the existing buffers.
An existing buffer can be expanded to the right, left, or both directions. An example of the
expanding buffer to the right is shown in Figure 5. In the expansion to the right, only the definition
of the expanded buffers is updated. All the uses and references of the expanded buffer remain the
same. In Figure 5, buffer1 is expanded to the right by five units in its definition. The use of buffer1
in the assignment statement does not change.

Figure 5. Expanding buffers to the right. buffer1 is expanded to the right by five units.

Figure 6 represents the expanding buffer to the left. Similar to the expansion to the right, the
definition of the expanded buffer is updated in the left expansion. However, each use or reference
of the expanded buffer must also be updated in its scope because the unused buffer is located at
the beginning of the existing buffer. Therefore, the buffer's use or reference in the assignment
statement is also updated in Figure 6. In this program transformation, all the values in the buffer
are shifted to the right by the size of the expansion. In the example, all values in buffer1 are shifted
to the right by five. Thus, the index (val) of buffer1 is incremented by five.

Figure 6. Expanding the buffers to the left. buffer1 is expanded to the left by five units.
 In order to expand buffers in both directions, the left and right expansions can be applied
consecutively. When buffers are expanded in both directions, the existing data is put in the middle
of the expanded buffers.
The apparent disadvantage of program transformations of expanding buffers is that the number of

expanded buffers is confined to the number of buffers in the program. On the contrary, there is no
such limitation on inserting new dummy buffers.

Increasing dimensions of existing buffers

In the previous two program transformations, the data in the buffer was continuous. The goal of
this program is to separate the data inside buffers and add dummy buffers between them. In this
program transformation, the dimension of random buffers is expanded by random sizes. In this
way, the data in the existing buffers are spread throughout the memory.

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
9 | P a g e

In addition to updating the definition of the expanded buffer, any references or uses of the
expanded buffer must also be updated in their scope. Because only one index is utilized in the new
dimension, a random index needs to be selected for use or reference in the expanded buffers.
Figure 7 shows an example of increasing the dimension of existing buffers. The one-dimensional
buffer is expanded to a two-dimensional buffer. The size of the new dimension is four. The use of

the buffer in the assignment statement has also been updated. The new dimension index in the use

of the buffer is two, a random number smaller than the size of the new dimension.

Figure 7. Increasing the dimension of existing buffers. The dimension of buffer1 is expanded. The

size of the new dimension is 4.

Index 2 is selected using the expanded buffer for the new dimension.
Converting primitive data type variables into buffers

One way to shift the vulnerable memory is by converting primitive data types, such as characters,
floats, integers, and Booleans, into random-size buffers or arrays. In this program transformation,
the value of the variable is placed in a random index in the new buffer. Other indexes in the buffer
are unused. This program transformation involves updating both the definition and
uses/references of the variables in the source code within its scope.
Figure 8 displays converting a primitive data type variable into a buffer. In this example, the
integer variable var is converted into an integer array of size five. The value in variable var is
moved to the second index of the buffer. Therefore, var is replaced with var[2] in the use of the
variable in Figure 8.

Figure 8. Converting primitive data type variables into buffers. The integer variable val is
converted to an integer array. The value of val is moved to the second index in the new buffer.
Implementation of K-variant architecture

This section explains and discusses some implementation details of the K-variant architecture. The
modules in the K-variant architecture can be implemented within a single program and run on a
single machine. Alternatively, a separate program can be developed for each module that runs on
single or multiple machines. Although the K-variant architecture provides diversity in memory
locations of critical data, other levels of diversity, such as operating systems, web servers, and
messaging protocols between modules, can be achieved for additional security.

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
10 | P a g e

In the N-version architecture, variants can be implemented in different programming languages.
However, that is not possible in the K-variant architecture, in which all variants are generated by
source-to-source program transformations. However, depending on the programming language,
diversity on the webserver can be provided. Because each web server will have a different
vulnerability, the security of the K-variant system will increase if the diversity of the web server is
achieved for each variant.
Table 1 shows the most popular web servers with their supported operating systems, programming
languages, the total number of reported vulnerabilities, and reported memory-related
vulnerabilities. Supported languages and operating systems for the web servers are not limited to
Table 1. With third-party support and new distributions, the coverage of the web servers keeps
increasing. Therefore, more diversity can be achieved at the webserver level in the K-variant
architecture. As seen in Table 1, an important percentage of the overall reported vulnerabilities are
memory-related. Furthermore, a significant portion of these memory-related vulnerabilities has
been reported in recent years. For example, 287 memory-related vulnerabilities have been
reported since 1999 on the Apache Web Server. 133 of 287 memory-related vulnerabilities in the
Apache Web Server have been reported since 2017 in the CVE Details vulnerability database [2].
That shows the potential threat of memory-related attacks on web servers and applications. For
this reason, it is advised to have a diverse set of webservers in the K-variant design.
Table 1. Operating systems and web servers that can be used in K-variant systems to provide

diversity. The vulnerability data numbers were retrieved from CVE Details [2].

Web Server Operating system
Supported

Languages

of Reported

vulnerabilities

of

memoryrelated

vulnerabilities

Apache HTTP

Server

Linux, Unix

Windows,

OpenVMS, Mac OS

X

PHP, ASP.NET,

Python, Prolog,

Ruby, Perl,

Lisp, Lua, JSP

1497 287

The Internet

Information

Server (IIS)

Windows

PHP, ASP.NET,

Python, Prolog,

Ruby, Perl

100 35

lighttpd

FreeBSD,

Windows, Linux,

Solaris, Mac OS X

PHP, Python, Perl,

Ruby, Lua
29 4

Oracle iPlanet

Web Server

(OiWS)

Linux, Unix,

Windows, Solaris,
PHP, Python, Perl 17 11

Jigsaw Server

Linux, Unix,

Windows, Mac

OS X, FreeBSD

PHP, JSP
3

0

Various program transformations can be utilized in VariantGenerator to generate new variants.
The algorithms for four program transformations that can be used in the K-variant architecture
are shown in [22]. By applying the strategy pattern, different program transformations can be
selected at runtime. After generating the source code of variants, they may need to be compiled
depending on the programming language. If variants are deployed on different operating systems,
different compilers will be required to generate binary files for a specific operating system. In this
case, the Variant Generator also needs to keep a list of compilers with their corresponding target
operating systems and commands to generate binary files for a specific operating system. On the
other hand, if the service is written in a scripting language, the implementation of the Variant

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
11 | P a g e

Generator may be much simpler. The transformed source code can be deployed to the server
without any compilation.
The messaging protocol is another implementation detail that needs to be considered in K-variant
systems. If variants are deployed on diverse operating systems and web servers, they need to be
communicated efficiently and securely without any issues. SOAP (Simple Object Access Protocol)
and REST (Representational State Transfer) are two standards that allow communication between
diverse systems. Both SOAP and REST use the HTTP protocol available on all web servers.
Therefore, SOAP and REST can be utilized in K-variant systems to communicate between
modules. SOAP uses only the XML format, which may cause an additional burden of creating and
parsing XML files. On the other hand, REST is not constrained to the XML file format. Any file
format, including JSON, XML, CSV, etc., can be used with REST. REST can provide much faster
communication than SOAP. However, creating requests and parsing responses is easy to
implement with REST if a .NET language is used. So, the selected messaging protocol can depend
on the performance and used programming language.
The Controller has one of the highest responsibilities in the K-variant architecture. Because of the
single point of failure, multiple controllers can be introduced to a system. The Controller finds the
service and requests all variants concurrently. The received responses need to be voted on to
produce the final result. The voting module in the Controller can be a simple majority algorithm.
Because all variants are generated from the same code, their trustworthiness is the same, and no
weighted voting algorithm is required. An acceptance test module can also be introduced to the
Controller to prevent voting responses from compromised variants.
CONCLUSIONS

In this paper, the K-variant architecture for web services and applications is described. The
Kvariant is a multi-variant architecture that improves security against memory exploitation
attacks. By applying source-to-source simple and safe program transformations, multiple variants
are generated in the K-variant architecture. These program transformations shift the addresses of
vulnerable data in memory so that the diversity of memory locations of critical data in each variant
is achieved. This paper proposes designing a K-variant architecture for web services and
applications. The proposed architecture aims to improve security against memory-related attacks.
Unlike other multi-execution architectures, the cost of the K-variant architecture is low because of
the automation in generating multiple variants. In this paper, four program transformations:
inserting dummy buffers, expanding the size of existing buffers, increasing the dimensions of
existing buffers, and converting primitive data type variables into buffers are briefly explained. In
addition, the added diversity at the webserver and operating system levels is discussed for Kvariant
systems for web services and applications. Deploying variants to different web servers that run on
different operating systems may provide additional security for K-variant systems.
In future work, the effectiveness of the K-variant architecture for web services and applications
will be investigated experimentally for various types of memory attacks. Moreover, the overhead
program transformations for web services and applications will be investigated.
REFERENCES

J. Dahse, "sonarsource," 20 6 2017. [Online]. Available: https://blog.sonarsource.com/security-
flaws-in-the-php-core?redirect=rips. [Accessed 90 7 2021]. "cvedetails," [Online].
Available: https://www.cvedetails.com/. [Accessed 31 7 2021].

B. Bekirogluand BogdanKorel, "Source Code Transformations for Improving Security of Time-
bounded K-variant Systems," Information and Software Technology, vol. 137, 2021.

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
12 | P a g e

E. Nourani, "A new architecture for Dependable Web Services using N-version programming," in
2011 3rd International Conference on Computer Research and Development, Shanghai,

China, March 2011.

G. K. Saha, "Single version fault tolerant web services," Ubiquity, no. 2007, p. 4:1, 2007.

G. K. Saha, "A Single-Version Scheme of Fault Tolerant Computing," in JOURNAL OF
COMPUTER SCIENCE & TECHNOLOGY, 2006.

S. Forrest, A. Somayaji and D. Ackley, "Building diverse computer systems," in Proceedings. The
Sixth Workshop on Hot Topics in Operating Systems, Cape Cod, MA, USA, May 1997.

Y. Deswarte, K. Kanoun and J.-C. Laprie, "Diversity against accidental and deliberate faults," in

Proceedings Computer Security, Dependability, and Assurance: From Needs to Solutions,
York, UK & Williamsburg, VA, USA, 7-9 July 1998.

S. Bhatkar, Defeating memory error exploits using automated software diversity, Thesis State
University of New York at Stony Brook, 2007.

G. S. Kc, A. D. Keromytis and V. Prevelakis, "Countering code-injection attacks with instruction-set
randomization," in Proceedings of the 10th ACM conference on Computer and

communications security, Washington D.C., USA, October 27, 2003.

G. Portokalidis and A. D. Keromytis, "Fast and practical instruction-set randomization for
commodity systems," in Proceedings of the 26th Annual Computer Security Applications

Conference, Austin, Texas, USA, December 6, 2010.

S. Bhatkar, D. C. DuVarney and R. Sekar, "Address obfuscation: an efficient approach to combat a
board range of memory error exploits," in Proceedings of the 12th conference on USENIX

Security Symposium - Volume 12, Washington, DC, August 4, 2003.

S. Bhatkar, R. Sekar and D. C. DuVarney, "Efficient techniques for comprehensive protection from
memory error exploits," in Proceedings of the 14th conference on USENIX Security

Symposium - Volume 14, Baltimore, MD, July 31, 2005.

D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight and A. Nguyen-Tuong, "Security

through Diversity: Leveraging Virtual Machine Technology," IEEE Security Privacy, vol. 7,
no. 1, pp. 26-33, January 2009.

M. Milenković, A. Milenković and E. Jovanov, "Using instruction block signatures to counter code

injection attacks," ACM SIGARCH Computer Architecture News, vol. 33, no. 1, p. 108–117,
March 1, 2005.

A. Avizienis, "The N-Version Approach to Fault-Tolerant Software," IEEE Transactions on
Software Engineering, Vols. SE-11, no. 12, pp. 1491-1501, December 1985.

L. Chen and A. Avizienis, "N-VERSION PROGRAMMINC: A FAULT-TOLERANCE APPROACH
TO RELlABlLlTY OF SOFTWARE OPERATlON," in Twenty-Fifth International

Multidisciplinary Journal of Technology

Volume 11 Issue 4, October-December 2023

ISSN: 2995-441X

Impact Factor: 7.73

https://kloverjournals.org/journals/index.php/Tech

Multidisciplinary Journal of Technology
13 | P a g e

Symposium on Fault-Tolerant Computing, 1995, ' Highlights from TwentyFive Years'.,
Pasadena, CA, USA, June 1995.

G. Santos, C. L. Lau and C. Montez, "FTWeb: a fault tolerant infrastructure for Web services," in

Ninth IEEE International EDOC Enterprise Computing Conference (EDOC'05), Enschede,

Netherlands, Sep. 2005.

X. Ye and Y. Shen, "A middleware for replicated Web services," in IEEE International Conference
on Web Services (ICWS'05), Orlando, FL, USA, July 2005.

B. Korel, S. Ren, K. Kwiat, A. Auguste and A. Vignaux, "Improving operation time bounded

mission critical systems' attack-survivability through controlled source-code
transformation," Sydney, Australia, November 14, 2011.

R. H. R. J. J. V. Erich Gamma, Design Patterns: Elements of Reusable Object-Oriented Software,
Pearson Education, 1994.

B. Bekiroglu and B. Korel, "Source Code Transformations for Improving Security of Timebounded
K-variant Systems,"Information and Software Technology (Elsevier), vol. 137, 2021.

P. Brady, "Cross-Site Scripting (XSS)," [Online]. Available:
https://phpsecurity.readthedocs.io/en/latest/Cross-Site-Scripting-(XSS).html. [Accessed 1
6 2020]. "Zend\Escaper," Zend, [Online]. Available:
https://framework.zend.com/manual/2.1/en/modules/zend.escaper.introduction.html.
[Accessed 1 6 2020].

U. Ladkani, "Prevent cross-site scripting attacks by encoding HTML responses," IBM, 30 7 2013.
[Online]. Available: https://www.ibm.com/developerworks/library/se-prevent/. [Accessed
1 6 2020].

B. Hope, P. Hope and B. Walther, Web Security Testing Cookbook: Systematic Techniques to Find
Problems Fast, Sebastobol, CA: O'Reilly Media, 2009-05-15.

B. Bekiroglu and B. Korel, "Survivability Analysis of K-Variant Architecture for Different Memory

Attacks and Defense Strategies," IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 4, pp. 1868-1881, 2021.

