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Abstract 

Stochastic production systems (SPS) play a pivotal role in industries such as fermentation, 

pharmaceuticals, and composite material production, where stringent quality constraints are 

paramount. To ensure product quality in such systems, effective process monitoring is imperative. 

However, SPS presents significant challenges due to its inherent stochasticity and measurement 

uncertainties, stemming from sensitivity to exogenous factors and the lack of accurate in-situ 

measurements. This paper explores the landscape of SPS process monitoring methods, highlighting 

their limitations and proposing a novel approach leveraging recurrent neural networks (RNNs), 

particularly Long Short-Term Memory (LSTM) networks. 

Keywords: Stochastic production system, process monitoring, recurrent neural networks, Long 

Short-Term Memory, quality constraints. 

 

Introduction: 

Stochastic production systems (SPS) have found applications in diverse fields, including fermentation, 

pharmaceuticals, and composite material production [1]-[7]. These applications demand stringent 

quality control measures to ensure the desired product quality. However, SPS presents unique 

challenges for process monitoring due to its inherent stochastic nature and measurement uncertainties, 

making effective quality control a complex endeavor. This introduction sets the stage for the 

exploration of process monitoring methods in SPS, emphasizing the need for innovative approaches. 

SPS exhibits significant intrinsic stochasticity, primarily attributed to its sensitivity to various 

exogenous factors such as input variations, environmental conditions, and equipment status. These 

factors can introduce substantial variability in the quality and performance of the final product. 

Moreover, the lack of accurate in-situ measurement methods adds an extra layer of noise to the 

available data, making process monitoring in SPS indispensable yet inherently challenging. 

Over the past few decades, researchers have developed several methods for SPS process monitoring. 

One prevalent approach is the application of multiway Principal Component Analysis (PCA) [8]. While 

this method offers simplicity, low-dimensional computation, and fast processing of high-dimensional 

data, it is inherently linear and struggles to capture nonlinear dynamics—a prevalent feature in SPS. 

To address the limitations of linear methods, researchers have explored kernel methods, which map 

data into high-dimensional feature spaces where linearity can be preserved [9]. Additionally, there 

have been efforts to enhance Independent Component Analysis (ICA) methods [10], propose novel 

strategies like the kernel ICAPCA method [11], and develop multiway kernel entropy ICA methods [12]. 

These approaches aim to capture the nonlinear and non-Gaussian characteristics inherent in SPS data. 
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Furthermore, Support Vector Machines (SVM) integrated with PCA or fuzzy reasoning have been 

employed for anomaly detection in SPS [13], [14]. However, these methods have limited capacity to 

handle heavy-tailed and multimodal SPS data, and their hyperparameter tuning can be cumbersome. 

The universal approximation theorem underscores the potential of neural networks to represent any 

function between inputs and outputs [15], making them an attractive option for SPS process 

monitoring. Auto-associative neural networks [16], [17] and deep neural networks [18]-[22] have been 

extensively explored for this purpose. However, these methods often assume sample independence and 

overlook dynamic correlations, limiting their effectiveness in capturing the complexities of SPS data. 

Recurrent neural networks (RNNs), particularly Long Short-Term Memory (LSTM) networks [23], 

offer a promising alternative for SPS process monitoring. LSTMs excel at predicting future system 

evolutions based on current and historical data, making them well-suited for anomaly detection [24], 

[25]. Nevertheless, their use is sometimes criticized for their limited interpretability, as they provide 

few insights into the underlying physical processes. 

In this paper, we delve into the application of LSTM networks for SPS process monitoring, aiming to 

overcome the limitations of existing methods and provide a deeper understanding of the monitored 

systems. Our proposed approach leverages the predictive power of LSTMs while striving to enhance 

interpretability, ultimately contributing to more effective and insightful SPS process monitoring.  

2. Problem Statement  

The most representative example of SPS is biochemical systems, and hence we will focus on it to 

showcase the developed method in the rest of the paper. The essence of biochemical systems is to 

convert substrates into high-value-added metabolites by living organisms (mostly cells). One of the 

major impediments for biochemical system production in high quality and quantity stems from the 

existence of a subpopulation of cells showing remarkably reduced production efficiency and capacity, 

which is termed as population heterogeneity in synthetic biology [1]. Such heterogeneity is an inevitable 

consequence of stochastic gene expression, which is solidly supported by massive single-cell 

experiments [39], [40]. In the context of biochemistry, gene expression indeed consists of a set of 

biochemical reactions with the participation of various macromolecules harbored in microscopic 

reactors (cells). The scarce of such macromolecules and the random molecular collision in the crowding 

reaction compartment of limited volume collectively lead to the stochasticity of intracellular 

biochemical reaction, particularly gene expression. As such, it is plausible to focus on gene expression 

process, which is the most critical and representative part. Without any loss of generality, any 

intracellular biochemical reaction can be described by  

                     (1)  

where   stands for species   ( ), the stoichiometric coefficients  and  are nonnegative 

integers specifying the molecule numbers of reactants and products involved in reaction  respectively, 

and  is the rate constant of reaction . In the stochastic sense,  is inversely proportional to the mean 

time of two successive reactions. The propensity of reaction  is  

                            (2)  
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with  being the compartment volume and  being the molecule number of reactant  .  Indeed, the 

propensity can be loosely understood as the probability of reaction occurrence. For instance, the 

transcription can be compactly described by  

                                     (3)  

where  stand for gene and messenger RNA (mRNA) respectively, and  is the transcription rate 

constant.  

Besides, there are various exogenous factors perturbing the normal operation of biochemical system, 

such as temperature fluctuation and contamination. The temperature impacts the reaction through 

reaction constants according to Arrhenius law. Arguably, so is the mechanism of contamination, as 

contamination may affect the catalytic efficiency of some enzyme. Hence, within the framework, when 

an anomaly takes place, it is reflected through the change of one or a group of reaction rate constants . 

The goal of process monitoring then becomes detecting anomaly from the data of reaction species  if 

some reaction rate constant  changes.  

3. Methods  

3.1. Data Acquisition  

The dynamics of system (1) can be simulated by the renowned Stochastic Simulation Algorithm (SSA), 

also known as Gillespie algorithm in systems biology [41]. The basic idea is to draw two random 

numbers, one for calculating the next reaction time, and the other for determining next reaction type. 

The pseudocode for SSA is presented as follows.  

Algorithm 1 Stochastic Simulation Algorithm  

1: Initialization:   

2: Repeat  

3:     Calculate propensities according to (2)  

4:     Obtain the time step to the next reaction event 

   
5:     Determine the next reaction event 

   
6:     Update time      

7:     Update   according to (1)  

8: Until   

Output:    

Notably, there is a Julia implementation developed by our group and available on Github as 

DelaySSAToolkit. The package is based on DiffEqJump, but more powerful as it is even able to simulate 

delayed reactions [42].  

3.2. Koopman Operator Theory  

Here we present a brief summary of Koopman operator theory. For more details, readers are 

encouraged to refer to [43]. Considering a discrete-time system, whose dynamics are governed by  

                                     (4) The state  is only observable through some function  such that  

, 

,  
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                        (5)  

As shown in Figure 1, the Koopman operator  is an infinite-dimensional linear operator acting on 

observing function  such that  

                           (6)  

where  is the composition operator.  

Suppose that in some Hilbert space spanned by a set of basis functions   termed Koopman 

eigenfunctions satisfying that  

                         (7) It follows that observing function can be compactly 

decomposed into  

                              (8)  

with the Koopman mode being . As per (7), the evolution of the measurement 

dynamics can be presented as  

                     (9)  

which is referred as Koopman mode decomposition and tightly 

connected to DMD. DMD is indeed a finite truncation of 

Koopman mode decomposition for a linear system ( is a 

linear function) [28], [43].  

  

Figure 1: Schematic of Koopman operator theory. An observing 

function  maps system states   into a high-

dimensional space where measurements   

evolving linearly governed by Koopman operator 

  is usually nonlinear [43].  

  

Figure 2: Schematics of deep Koopman neural 

network. (a) shows an autoencoder   and   

establishing a bijective static mapping between the 

original space   and the high-dimensional linear 

space  . (b) shows how the DKNN performs one-step prediction. (c) interprets the loss function 

 . The left panel corresponds to , while the right stands for  .  

  

, while the evolution operator    of states  
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Figure 3: DKNN based anomaly detection protocol. Left: SVDD calculates the radius associated with 

90% confidence interval based on the residues between predictions and measurements. Right: An 

anomaly is detected if the residue of a newly cast prediction is larger than an established radius. 

Otherwise, the system is still working in normal.  

3.3. Deep Koopman Neural Network  

KOT is a seemingly elegant theory enabling global linearization but rather difficult to perform, as 

solving the triplet of the eigenfunction  , the eigenvalue   and the mode   is a daunting task. The 

choice of eigenfunctions is non-trivial and calls for intricate tricks. In stark contrast, deep neural 

network provides a convenient way to seek the eigenfunctions. Reference [33] reported a neat approach 

based on a deep autoencoder which constitutes a bijective mapping between the original space and the 

highdimensional linear space and approximates the set of the valid eigenfunction bases (see Figure 2a). 

Note that [33] needs an auxiliary neural network to perform the Koopman operator, and it substantially 

increases the complexity. As such, we revise the neural network presented in [33] by removing the 

auxiliary neural network and identifying the linear operator  directly, which is modeled by a linear 

network (see Figure 2b). Subsequently, we specify the loss function for the DKNN training. The loss 

function is composed of five parts, the first three of which is specified as follows  

                        (10)  

Here  and  represent the reconstruction error and one-step prediction error in the original space 

respectively, and  is the one-step prediction error in the high-dimensional linear space (see Figure 2c). 

The subscript MSE stands for mean squared error.  

An  term is also used to penalize the data point with the largest loss  

                        (11) Additionally,  regularization is imposed on the neural 

network weights  to prevent overfitting  

                                   (12) Hence, the total loss function is the weighted summation of all the 

five parts  

                  (13)  

where  for  stands for the weight for each parts in the loss function. The DKNN is then determined by 

solving the optimization problem . For SPS process monitoring, the input   can be the moments 

(mean, variance, etc.) of molecule counts of interest.  

3.4. Anomaly Detection Protocol  

With the DKNN model well trained, it is possible to calculate the residues between the model 

predictions and measurements. Given the residues yielded, the SVDD is used to compute the 90% 

confidence threshold, which is termed as radius thereafter (see Figure 3Left). In practice, given the 

historical data, DKNN casts one-step predictions, which are used to compute the residues. The yielded 
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residues are compared with the radius obtained before. If a residue is larger than the radius, an 

anomaly is detected. Otherwise, the system is still running normally (see Figure 3Right).  

  
Figure 4: Stochastic simulations for Example 1.  

  
Figure 5: DKNN process monitoring for Example 1 based on mean-value data. (a) shows the DKNN 

model based on mean-value data cast precise one-step predictions, as predictions (green dots) are close 

to the line  (purple). (b) SVDD calculates the radius (red) for anomaly detection and most samples 

(green dots) are contained within the radius.  

  
Figure 6: Sensitivity of moments against anomaly. The anomaly occurs at time . All the moments 

are normalized for visual convenience, and the normalization methods are stated in Appendix  

6.2. Moments of order higher or equal to 2 are sensitive to anomaly, while the mean value is not.  

Table 1: Anomaly detection F-scores test result for mean-valued data of example 1.  

Confidence    90%   
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Time (min)  401  420   450  480  

F-score 

(%)  

15.365  11.645   14.155  12.744  

  
Figure 7: Accuracy of DKNN models one-step prediction for different orders of moments. DKNN model 

trained on a dataset containing (a) mean and variance; (b) mean, variance and third-order moment; 

(c) mean, variance, third-order moment and fourth-order moment.  

  
Figure 8: F-score of temporal anomaly detection of three DKNN model trained on dataset containing 

moments of order up to 2, 3 and 4.  

4. Results  

Next we unfold the process monitoring protocols on two canonical examples with both firmly rooted in 

SPS.  

4.1. Example 1  

The first canonical example considered comprises the following set of biochemical reactions:  

                        (14)  

where  stands for a protein of interest. The first reaction in (14) in fact represent a group of reactions, 

and means that the protein is produced in bursts, whose size  conforms to a geometric distribution 

parametrized by  , while the second stands for the degradation of protein or its loss of 
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functionality. The system (14) is known as bursty system in literature, and was found to adequately 

characterize the stochastic dynamics of most genes in mammalian or human cells [40]. The burst 

frequency  is selected as 0.0282 min-1, the mean burst size  is 3.46, and the degradation rate constant 

 is 0.01 min-1. These kinetic parameters correspond to those associated with gene Nanog in mouse 

embryonic stem cells [40].  

We first simulate the system (14) by means of SSA for 1, 10, 100 and 1000 realizations and each for two 

sets. In either set, the protein numbers are averaged for all realizations at each time point. The results 

in Figure 4 show that the single-realization data is remarkably noisy and thus poses challenges for 

establishing a robust process monitoring model (see Figure 4a). The distribution of protein numbers 

at  min is shown in Figure 4e, and is indeed a negative binomial distribution [40]. The fluctuations 

are substantially attenuated as the number of averaged realizations increase (see Figures. 4b, 4c, 4d). 

It suggests that ensemble method is a simple but effective approach for data curation. However, 

precautions should be taken for large number of realizations for two reasons: (i) the anomaly may be 

averaged out so that its detection becomes challenging; (ii) the large number of realizations is 

tantamount to that of cells, whose sampling may be difficult in practice. Here we choose the number to 

be 100.  

Next we show that the mean is not adequate for process monitoring on SPS. To this end, we simulate a 

fault by decreasing   to a third (   min-1) and increasing   by three times (  ) at time 

. First, we trained  a DKNN model with mean values at two successive time points as input and 

output. The training dataset comprises 2000 data points collected at time  

corresponding to the steady state (see Figure 4e), while a test set is of size 100, on which an accuracy 

test is performed. The accuracy of the trained DKNN model is shown in Figure 5a. The predictions are 

distributed close to the line , indicating that these predictions are accurate. By means of SVDD, a 

radius for anomaly detection is computed and shown as red line in Figure 5b. Most of the residues (~ 

90%) are contained within this radius. Within the help of the DKNN model and the radius, we perform 

the test to detect the aforementioned anomaly occurring at time . The F-scores averaged over 20 

independent ensemble samples at 4 different time points are presented in Table 1. It clearly shows that 

the detection accuracy is low and cannot be improved over time, thereby solidly advocating our 

statement that mean value is not sufficient for SPS process monitoring. The unsatisfactory result is 

attributed to the anomaly we specially chose. As stated previously, the steady state distribution of the 

system (14) is negative binomial parametrized as  with the mean being . The mean is not 

altered for the specially selected anomaly. Hence, it is a vivid example showing that the mean value is 

not adequate to characterize the SPS dynamics and calls for high-order moments. It is also evidenced 

by Figure 6a that the difference between the faulted and normal trajectories can hardly be discerned, 

whereas Figures. 6b, 6c, 6d show that high-order moments are much more sensitive to the anomalies.  

Given the observation, it is necessary to incorporate high-order moments in datasets for SPS anomaly 

detection. As such, we create another three pairs of training and test datasets, and each has the 

moments up to order 2, 3 and 4 respectively. The methods of moments calculation are stated in 

Appendix 6.1. After training DKNN models on the three training datasets, three independent accuracy 

  and  
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tests on the corresponding test dataset are carried out, and the results are shown in Figure 7. It shows 

that the accuracy   degrades as the order of moment of prediction interest increases as expected. 

Generally, the  

fluctuations in higher-order moments are more intense than that in lower-order moments.  

Subsequently, we use the three well-trained DKNN models to detect the aforementioned anomaly. It 

shows in Figure 8 that the detection becomes more accurate as the anomaly effects accumulate in time. 

Besides, the models based on moments of order 3 and order 4 outperform that of order 2, while the 

performance of the former two are comparable. Hence, it is concluded that the combination of 

moments of order up to 3 probably suits best for DKNN model performing anomaly detection in SPS.  

Furthermore, we compare the DKNN model and DMD model both trained on the dataset containing 

moments of order up to 3. The accuracy comparison is summarized in Figure 9a. It shows that DKNN 

outperforms DMD on the predictions of all the moments. However, the DKNN's advantage is mitigating 

as the stochasticity gets stronger in higher-order moment data. As for anomaly detection, the F-scores 

of DKNN are higher than that of DMD by 15% ~ 50% (see Figure 9b).  

  
Figure 9: Comparison of DKNN and DMD on (a) prediction accuracy and (b) anomaly detection of 

Example 1.  

  
Figure 10: Comparison of DKNN and DMD on prediction accuracy of Example 2.  

  
Figure 11: Stochastic simulations for Example 2.  

Table 2: Comparision of DKNN and DMD on detection of anomalies case 1 & case 2 in example 2  



Klover Multidisciplinary Journal of Engineering 
Volume 10 Issue 1, January-March 2022 
ISSN: 2995-4118 

Impact Factor: 6.40 

http://kloverjournals.org/journals/index.php/Engineering 

 

 

Klover Multidisciplinary Journal of Engineering 
24 | P a g e  

Case  Case 1  Case 2  

Method  DKNN  DMD  DKNN  DMD  

Time 

(min)  

21  21  21  21  

F-score 

(%)  

92.44  66.67  23.91  16.39  

Table 3: DKNN technical details  

Case  Case 1  Case 2  

Method  DKNN  DMD  DKNN  DMD  

Time 

(min)  

21  21  21  21  

F-score 

(%)  

92.44  66.67  23.91  16.39  

4.2. Example 2  

Next we consider a more complicated example, which is of great biological interest as well. The SPS 

consists of five biochemical reactions:   

                   (15)  

The system as a whole is named telegraph model, which is a renowned model for gene expression in 

[44]. The symbols  and  stand for two gene states that are actively expressing proteins (usually referred 

as ON state) and less active (referred as OFF state with leakage). The first two reactions in (15) mean 

protein  being expressed, the third stands for protein degradation, the fourth and fifth mean that the 

gene is hopping between ON and OFF states. The kinetic parameters we use here are: ,  

 ,  ,  ,  . By using SSA, we collect data at  

time  min to create a training dataset of size 2000 and a test dataset of size 100. Both datasets contain 

the moments of order up to 3. By training DKNN and DMD model on the training dataset and 

comparing both on the test dataset, it is found in Figure 10 that DKNN is remarkably better than DMD 

for predicting all the moments, despite a loss in accuracy compared to the result of Example 1. However, 

it is with expectation, since the distribution for the kinetic parameters selected is bimodal suggesting 

the protein number is fluctuating between two disparate levels (see Figure 11). In the following, we 

further compare both models on detecting two different types of anomalies.  

4.2.1. Case 1  

The rate  is changed to 40 at time  min, which corresponds to gene expression process of state 

ON changed. Based on the yielded models and the associated residues, SVDD computes the radii of 

90% confidence interval for anomaly detection. The detection result is reported in Table 2, where the 

Fscores strongly support the superiority of DKNN.  
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4.2.2. Case 2  

The rate  is changed to  at time  min, which corresponds the gene is more often switching to 

OFF state. By applying the same process monitoring protocol again, the results in Table 2 again 

confirms DKNN's supremacy against DMD. However, the F-scores are lower than that of Case 1. It may 

be related to that Case 2 corresponds to a perturbation on the upstream of gene expression, while Case 

1 corresponds to the downstream. The upstream perturbation may be buffered by a multitude of 

downstream processes, and thus becomes more challenging to detect. Nevertheless, Case 2 provides an 

excellent arena for benchmarking various process monitoring methods.  

5. Conclusions  

In this paper, we discuss the process monitoring for SPS and develop an integrated method of Koopman 

operator theory and deep neural network to solve it. The method uses a deep autoencoder structure to 

establish a bijective mapping between original space and a high-dimensional linear space, where the 

Koopman operator operates. An anomaly detection threshold is computed by SVDD on the basis of 

unmodeled residues. It is also argued that given the novel type of stochasticity—intrinsic noise, the 

SPS in the form of biochemical systems simulated by SSA can serve as an excellent arena for 

benchmarking various process monitoring methods. As SPS data is remarkably noisy, we propose to 

use ensemble method to tackle it and conclude that high-order moments have to be incorporated for 

robustness.  

6. Appendix  

6.1. Moment calculation  

The moments in data are calculated as central moments  

                         (16)  

where  is the number of samples,  stands for the value of sample at a certain time, and  is  

the mean of sample.  

6.2. Moment normalization  

The moments in the normal case is normalized by the min-max method as follows  

                          (17)  

where  is the raw moment data,  stands for the normalized moment, and  stand for 

the minimum and maximum of the raw data. The moments in the faulted case are normalized as per 

the minimum  and maximum  of the normal case.  

6.3. Neural network details  

The Koopman operator is implemented as a linear network. All the technical details of DKNN including 

network structure and hyperparameters are summarized in Table 3. All the weights of neural network 

are initialized as per a truncated normal distribution , while the biases are set to 0. The training 

optimizer is Adam with a learning rate equal to 0.001.  

References  

Wang, G., Haringa, C., Noorman, H., Chu, J., and Zhuang, Y. (2020). Developing a Computational 

Framework to Advance Bioprocess Scale-Up. Trends in Biotechnology, 38(8), 846-856.  

,  



Klover Multidisciplinary Journal of Engineering 
Volume 10 Issue 1, January-March 2022 
ISSN: 2995-4118 

Impact Factor: 6.40 

http://kloverjournals.org/journals/index.php/Engineering 

 

 

Klover Multidisciplinary Journal of Engineering 
26 | P a g e  

Lu, J., Cao, Z., Zhao, C., and Gao, F. (2019). 110th Anniversary: An Overview on Learning-Based Model 

Predictive Control for Batch Processes. Industrial & Engineering Chemistry Research, 58(37), 

17164-17173.  

Jiang, Q., Wang, Z., Yan, S., and Cao, Z. (2022). Data-Driven Soft Sensing for Batch Processes Using 

Neural Network-Based Deep Quality-Relevant Representation Learning. IEEE Transactions on 

Artificial Intelligence.  

Cao, Z., Yu, J., Wang, W., Lu, H., Xia, X., Xu, H., and Zhang, L. (2020). Multi-Scale Data-Driven 

Engineering for Biosynthetic Titer Improvement. Current Opinion in Biotechnology, 65, 205-

212. [5] Gao, J., Feng, E., and Zhang, W. (2022). Modeling and Parameter Identification of 

Microbial Batch Fermentation under Environmental Disturbances. Applied Mathematical 

Modelling, 108, 205-219.  

Soukoulis, C., Panagiotidis, P., Koureli, R., and Tzia, C. (2007). Industrial Yogurt Manufacture: 

Monitoring of Fermentation Process and Improvement of Final Product Quality. Journal of 

dairy science, 90(6), 2641-2654.  

Sriramula, S., and Chryssanthopoulos, M. K. (2009). Quantification of Uncertainty Modelling in 

Stochastic Analysis of FRP Composites. Composites Part A: Applied Science and Manufacturing, 

40(11), 1673-1684.  

Lu, H., Plataniotis, K. N., and Venetsanopoulos, A. N. (2008). MPCA: Multilinear Principal Component 

Analysis of Tensor Objects. IEEE transactions on Neural Networks, 19(1), 18-39. [9] Lee, J. M., 

Yoo, C., and Lee, I. B. (2004). Fault Detection of Batch Processes Using Multiway Kernel 

Principal Component Analysis. Computers & Chemical Engineering, 28(9), 1837-1847.  

Jia, Z. Y., Wang, P., and Gao, X. J. (2012). Process Monitoring and Fault Diagnosis of Penicillin 

Fermentation Based on Improved MICA. Advanced Materials Research, 591, 1783-1788.  

Zhao, C., Gao, F., and Wang, F. (2009). Nonlinear Batch Process Monitoring Using Phase-Based 

Kernel-Independent Component Analysis−Principal Component Analysis (KICA−PCA). 

Industrial & Engineering Chemistry Research, 48(20), 9163-9174.  

Peng, C., Chunhao, D., and Qiankun, Z. (2020). Fault Diagnosis of Microbial Pharmaceutical 

Fermentation Process with Non-Gaussian and Nonlinear Coexistence. Chemometrics and 

Intelligent Laboratory Systems, 199, 103931.  

Yang, C., and Hou, J. (2016). Fed-Batch Fermentation Penicillin Process Fault Diagnosis and Detection 

Based on Support Vector Machine. Neurocomputing, 190, 117-123.  



Klover Multidisciplinary Journal of Engineering 
Volume 10 Issue 1, January-March 2022 
ISSN: 2995-4118 

Impact Factor: 6.40 

http://kloverjournals.org/journals/index.php/Engineering 

 

 

Klover Multidisciplinary Journal of Engineering 
27 | P a g e  

Ding, J., Cao, Y., Mpofu, E., and Shi, Z. (2012). A Hybrid Support Vector Machine and Fuzzy Reasoning 

Based Fault Diagnosis and Rescue System for Stable Glutamate Fermentation. Chemical 

Engineering Research and Design, 90(9), 1197-1207.  

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer Feedforward Networks Are Universal 

Approximators. Neural Networks, 2(5), 359-366.   

Shimizu, H., Yasuoka, K., Uchiyama, K., and Shioya, S. (1997). On-Line Fault Diagnosis for Optimal 

Rice a-Amylase Production Process of a Temperature-Sensitive Mutant of Saccharomyces 

Cerevisiae by an Autoassociative Neural Network. Journal of Fermentation and Bioengineering, 

83(5), 435-442.  

Lopes, J. A., and Menezes, J. C. (2004). Multivariate Monitoring of Fermentation Processes with Non-

Linear Modelling Methods. Analytica Chimica Acta, 515(1), 101-108.   

Yu, J., Zhang, C., and Wang, S. (2021). Multichannel One-Dimensional Convolutional Neural Network-

Based Feature Learning for Fault Diagnosis of Industrial Processes. Neural Computing and 

Applications, 33, 3085-3104.  

Chen, S., Yu, J., and Wang, S. (2020). One-Dimensional Convolutional Auto-Encoder-Based Feature 

Learning for Fault Diagnosis of Multivariate Processes. Journal of Process Control, 87, 54-67. 

[20] Peng, C., Lu, R., Kang, O., and Kai, W. (2020). Batch Process Fault Detection for Multi-

Stage Broad Learning System. Neural Networks, 129, 298-312.   

Chen, H., Liu, Z., Alippi, C., Huang, B., and Liu, D. (2022). Explainable Intelligent Fault Diagnosis for 

Nonlinear Dynamic Systems: From Unsupervised to Supervised Learning. IEEE Transactions 

on Neural Networks and Learning Systems.  

Chen, H., Chai, Z., Dogru, O., Jiang, B., and Huang, B. (2021). Data-Driven Designs of Fault Detection 

Systems Via Neural Network-Aided Learning. IEEE Transactions on Neural Networks and 

Learning Systems, 33(10), 5694-5705.  

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term 

Memory (LSTM) Network. Physica D: Nonlinear Phenomena, 404, 132306.  

Zhang, M., Li, X., and Wang, R. (2021). Incipient Fault Diagnosis of Batch Process Based on Deep Time 

Series Feature Extraction. Arabian Journal for Science and Engineering, 1-12.  

Ren, J., and Ni, D. (2020). A Batch-Wise LSTM-Encoder Decoder Network for Batch Process 

Monitoring. Chemical Engineering Research and Design, 164, 102-112.  



Klover Multidisciplinary Journal of Engineering 
Volume 10 Issue 1, January-March 2022 
ISSN: 2995-4118 

Impact Factor: 6.40 

http://kloverjournals.org/journals/index.php/Engineering 

 

 

Klover Multidisciplinary Journal of Engineering 
28 | P a g e  

Koopman, B. O. (1931). Hamiltonian Systems and Transformation in Hilbert Space. Proceedings of the 

National Academy of Sciences, 17(5), 315-318.  

Brunton, S. L. (2019). Notes on Koopman Operator Theory. Universität Von Washington, Department 

of Mechanical Engineering, Zugriff, 30.  

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S. (2009). Spectral Analysis of 

Nonlinear Flows. Journal of Fluid Mechanics, 641, 115-127.  

Schmid, P. J. (2010). Dynamic Mode Decomposition of Numerical and Experimental Data. Journal of 

Fluid Mechanics, 656, 5-28.  

Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. (2015). A Data–Driven Approximation of the 

Koopman Operator: Extending Dynamic Mode Decomposition. Journal of Nonlinear Science, 

25, 13071346.  

Korda, M., and Mezić, I. (2018). Linear Predictors for Nonlinear Dynamical Systems: Koopman 

Operator Meets Model Predictive Control. Automatica, 93, 149-160.  

Brunton, S. L., Brunton, B. W., Proctor, J. L., and Kutz, J. N. (2016). Koopman Invariant Subspaces 

and Finite Linear Representations of Nonlinear Dynamical Systems for Control. Plos One, 11(2), 

e0150171.  

Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep Learning for Universal Linear Embeddings of 

Nonlinear Dynamics. Nature Communications, 9(1), 4950.  

Yeung, E., Kundu, S., and Hodas, N. (2019, July). Learning Deep Neural Network Representations for 

Koopman Operators of Nonlinear Dynamical Systems. In 2019 American Control Conference 

(ACC) (pp. 4832-4839). IEEE.  

Dubey, R., Samantaray, S. R., Panigrahi, B. K., and Venkoparao, V. G. (2016). Koopman Analysis Based 

Wide-Area Back-Up Protection and Faulted Line Identification for Series-Compensated Power 

Network. IEEE Systems Journal, 12(3), 2634-2644.  

Dang, Z., Lv, Y., Li, Y., and Wei, G. (2018). Improved Dynamic Mode Decomposition and Its 

Application to Fault Diagnosis of Rolling Bearing. Sensors, 18(6), 1972.  

Cheng, C., Ding, J., and Zhang, Y. (2020). A Koopman Operator Approach for Machinery Health 

Monitoring and Prediction with Noisy and Low-Dimensional Industrial Time Series. 

Neurocomputing, 406, 204-214.  



Klover Multidisciplinary Journal of Engineering 
Volume 10 Issue 1, January-March 2022 
ISSN: 2995-4118 

Impact Factor: 6.40 

http://kloverjournals.org/journals/index.php/Engineering 

 

 

Klover Multidisciplinary Journal of Engineering 
29 | P a g e  

Liu, B., Xiao, Y., Cao, L., Hao, Z., and Deng, F. (2013). Svdd-Based Outlier Detection on Uncertain 

Data. Knowledge and Information Systems, 34, 597-618.  

Larsson, A. J., Johnsson, P., Hagemann-Jensen, M., Hartmanis, L., Faridani, O. R., Reinius, B., and 

Sandberg, R. (2019). Genomic Encoding of Transcriptional Burst Kinetics. Nature, 565(7738), 

251254.   

Cao, Z., and Grima, R. (2020). Analytical Distributions for Detailed Models of Stochastic Gene 

Expression in Eukaryotic Cells. Proceedings of the National Academy of Sciences, 117(9), 4682-

4692. [41] Gillespie, D. T. (1977). Exact Stochastic Simulation of Coupled Chemical Reactions. 

The Journal of Physical Chemistry, 81(25), 2340-2361.  

Fu, X., Zhou, X., Gu, D., Cao, Z., and Grima, R. (2022). DelaySSAToolkit. jl: Stochastic Simulation of 

Reaction Systems with Time Delays in Julia. Bioinformatics, 38(17), 4243-4245.  

Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N. (2021). Modern Koopman Theory for Dynamical 

Systems. arXiv preprint arXiv:2102.12086.  

Cao, Z., and Grima, R. (2018). Linear Mapping Approximation of Gene Regulatory Networks with 

Stochastic Dynamics. Nature Communications, 9(1), 3305.   


